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DNA shuffling is an evolutionary protocol wherein cycles of selection, recombination, mutation, and am-
plification are employed to evolve proteins and DNA sequences. Experiments have shown its superiority to
traditional protocols which do not employ recombination. Motivated by DNA shuffling, we investigate a
multilocus evolutionary model that incorporates selection, recombination, and point mutations. Due to sim-
plicity of the model, for the case of an infinite population we can obtain a full analytical treatment of both its
dynamical and equilibrium properties, and study the benefit of recombination explicitly and quantitatively. We
also briefly discuss finite-population size corrections.
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I. INTRODUCTION

Recombination, i.e., the exchange of genetic information,
is a widespread phenomenon in both prokaryotes and eu-
karyotes. In prokaryotes, recombination happens occasion-
ally, mediated by phages, direct cell-cell contact, or direct
uptake of free DNA from the environment[1]. In eukaryotes,
recombination between homologous sequences is a funda-
mental component underlying sexual reproduction[2]. An
enormous body of research has been devoted to understand-
ing the evolutionary benefit of recombination in various cir-
cumstances. This effort has led to some general understand-
ing of the circumstances under which recombination helps
facilitate evolution, however, many important questions still
remain open[3], one important reason lying in the difficulty
in theoretical treatments[4].

Inspired by recombination in natural evolution, and pro-
pelled by advances in biotechnology, recombination has been
employed inin vitro molecular evolution experiments to de-
velop proteins and DNA sequences[5,6]. This family of evo-
lutionary protocols, called DNA shuffling(or molecular
breeding) [7,8], has been shown experimentally to produce,
in terms of the rate of evolutionary progression and final
product quality, far superior results as compared to conven-
tional directed evolution methods using only mutagenesis
[5,6]. In addition to its widespread practical applications,
DNA shuffling has been used to mimic natural evolutionary
processes and predict possible evolutionary pathways[9,10].

In spite of its enormous significance, a theoretical under-
standing of DNA shuffling has been lacking. In this paper,
we investigate DNA shuffling from the perspective of evolu-
tionary modeling. Specifically, we aim to find out, quantita-
tively and analytically, the benefit that the extra step of re-
combination provides in the evolutionary process, as well as
such aspects as the role of mutation and finite-population
effects.

Compared to other evolutionary processes, DNA shuffling
has two unique features that render it attractive to theoretical
study. First, the methods of biotechnology enable a unique
recombination scheme that goes well beyond the classical

one, i.e., two parents with at most a few crossovers. The
multiparent multicrossover nature of DNA shuffling, as we
shall see, makes it more effective, and also, incidentally, al-
lows for an exact analytical treatment. Second, in the setting
of DNA shuffling the relationship between genotype, pheno-
type, and fitness is relatively clear and well defined. In addi-
tion, such parameters as selection strength, mutation rate,
and the amount of recombination are all experimentally con-
trollable. These characteristics should allow theoretical re-
sults to be tested directly against experiments.

Specifically, we propose a simple model that incorporates
three basic ingredients: selection, recombination, and point
mutations. In order to facilitate comparison with various ex-
isting evolutionary models, we present our ideas in the lan-
guage of population genetics. In this language, we study a
haploid (i.e., each individual carries a single copy of every
gene) multilocus model with multiparent free recombination,
and subject to dynamical truncation selection, wherein the
fitness of a genotype depends on the population state. We
obtain analytical results for both the dynamics and the equi-
librium properties, and gain insights into not only why, but
also how exactly recombination works. This is one of the
rare cases in population genetics where exact results can be
obtained for a nontrivial multilocus model[11].

This paper is organized as follows. In Sec. II, we present
a model of the DNA shuffling process. We first consider the
relevant experimental aspects of DNA shuffling, then pro-
pose a model that includes all the key ingredients yet is
simple enough to allow analytical analysis, at least for the
infinite population limit. In Sec. III, we focus on the model’s
dynamical behavior, studying the role of mutation as well as
effects of the amount of diversity in the initial library. In Sec.
IV, we move on to the consideration of equilibrium proper-
ties, with a discussion of the genetic load under recombina-
tion and a comparison of the equilibrium position with and
without recombination. In Sec. V, we discuss finite-
population effects, focusing on the question of how large
must the population size be so that it behaves like one of
infinite population.
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II. MODELING THE DNA SHUFFLING PROCESS

DNA shuffling involves a directed evolution process
wherein a library of homologous DNA sequences is subject
to rounds of competitive selection andin vitro recombination
with multiple parents and multiple crossovers[7,8]. DNA
shuffling is a discrete process with nonoverlapping genera-
tions, each round of which involves selection, recombina-
tion, and point mutation, and is finished by amplification via
the polymerase chain reaction(PCR) of the population back
to it original size. The typical selection scheme in DNA shuf-
fling experiments is truncation selection, also known as
breeding selection, where only a fixed portion of the popu-
lation (e.g., the top 10 %) is chosen to be retained to partici-
pate in later rounds. In truncation selection, whether a par-
ticular member of the population is selected or not depends
on whether the desired trait exceeds a certain threshold set by
the population as a whole and by the selection strength(i.e.,
the fraction of population selected). As opposed to other evo-
lutionary scenarios, there is no advantage to being better than
the cutoff threshold—there is no pressure to excel. Math-
ematically, this has a dramatic effect on the dynamics, in that
the effect of population size is much weaker, as the rare
“superstars” found only in a large population do not skew the
results.

The recombination step typically involves random frag-
mentation of homologous DNA sequences by DNase diges-
tion and repeated cycles of reassembly via a self-primed
polymerase chain reaction[7,8]. Recombination produces
chimeras with a controllable average fragment size(of order
10 base pairs or above). Point mutation is incorporated via
the recombination and amplification steps where PCR is uti-
lized and is naturally error prone. To date, the rate of point
mutation has been kept very low and only single nucleotide
substitution is assumed to be involved. Thus, sequence diver-
sity has come mostly from the diversity present in the initial
library instead of being generated by point mutation. This
lessens the deleterious effects associated with high rates of
mutagenesis but ultimately limits the usefulness of the
method. A proper balance of recombination and mutation, as
we shall see, would lead to more optimal results.

To make our discussion concrete, we envision the com-
petitive evolution of a library of DNA sequences, selected
via binding affinity to certain proteins; an example of such a
system is the DNA-histone interaction[12]. As discussed
elsewhere[13–15], selection achieved via thermodynamic
binding can be mimicked to a high level of accuracy by the
simple truncation selection approach. In order to facilitate a
theoretical treatment, we construct simplified models of the
recombination and selection steps. Let us describe the selec-
tion step first. For selection, we need a model that connects
genotype and phenotype, which in this case are the DNA
sequence and the binding energy of the DNA to the protein,
respectively, as well as a model that specifies selection on the
phenotype. We adopt the simplest relationship between geno-
type and phenotype. We assume that each nucleotide contrib-
utes to the binding energy independently and additively.
Each nucleotide can be one of theAs=4d nucleotides(repre-
sentingA, C, G, andT), among which one is favorable and
the rest are equally deleterious. For simplicity, we denote the

contribution of a specific site to the binding energy 1(0) if
therein sits a favorable(deleterious) nucleotide. We will refer
to a favorable(deleterious) nucleotide as a match(mismatch)
with respect to the optimal sequence. This formulation is in
fact a two-state model for protein-DNA binding[13,15]. The
binding energy of the sequence is simply the number of sites
with favorable nucleotides.

Figure 1(a) shows schematically the shape of our pheno-
typic landscape. Of course, our model reflects just the sim-
plest possibility. In reality, the phenotypic landscape could be
much more complicated and is rarely known; in fact, a sig-
nificant advantage of directed evolution over rational design
is that this kind of knowledge is not necessary[16]. Our
strategy here is to study the simplest nontrivial model avail-
able and obtain a thorough understanding, with the hope of
proceeding to more complicated situations to see which re-
sults obtained in the simple model are general and which are
model specific. Having specified the phenotypic landscape,
we next describe the selection protocol. Selection acts on the
binding energy of the sequences. As noted above, in(mo-
lecular) breeding, truncation selection is used. We define the
selection strength via the fractionf of selected members of
the total population. Suppose we have a distribution of popu-
lation Pm in terms of the binding energymsm=0,1, . . . ,Ld,

FIG. 1. (a) Phenotypic landscape: Binding energy is exactly the
number of favorable active sites(denoted bym). Dash line indicates
the corresponding selection thresholdm0 at a particular stage of
evolution. (b) The fitness has a dynamic truncation landscape. Se-
quences with binding energy below the thresholdm0 are discarded,
whereas those with binding energy above the threshold are retained
to reproduce with equal rate.
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whereL is the total number of active sites. The thresholdm0
is self-consistently determined by

f = aPm0
+ o

m=m0+1

L

Pm, s1d

where a in the first term takes into account of the partial
selection on the threshold statem0. f varies from f&1
(relatively weak selection) to small f (relatively strong se-
lection). For those sequences whose number of matches are
above (below) m0, they are selected(discarded), and their
fitness is 1(0) [see Fig. 1(b)]. In the truncation selection
scheme every member’s fitness is collectively and dynami-
cally determined by both the phenotypic distribution of the
populationPm and the selection strengthf. In contrast, most
fitness landscapes studied prescribe for each genotype a pre-
set fitness value and its effective fitness value is simply its
own fitness over the mean fitness[17]. Truncation selection
generates correlations(i.e., linkage) between loci, hence it is
epistatic[18,19].

We note in passing that the term truncation selection has
also been used to mean afixedsteplike landscape. In popu-
lation genetics literatures, a fixed steplike landscape is also
calledhard truncation selection, and the selection scheme we
employed is sometimes termedsoft truncation selection. Due
to the dynamical nature of the selection scheme, using fitness
as a yardstick for the evolution is not very useful; for ex-
ample, the mean fitness of the population is alwaysf by
definition. As a consequence, we will focus on the evolution
of the phenotypic distribution, i.e., the distribution of binding
energies, instead of the fitness distribution.

We now turn to the discussion of recombination. Recom-
bination in general is a nonlinear nonlocal operation in se-
quence space, hence not easily amenable to theoretical treat-
ment [4]. Our basic approach here will be to make a
substantial simplification of the actual situation and assume
perfect recombination between all nucleotides. Namely, in
building each new sequence after selection, each nucleotide
independently samples the nucleotides at the corresponding
sites in the entire selected population. Formally, this amounts
to assuming that the fragmentation and reassembly process is
repeated often enough such that there is no linkage between
any of the nucleotides. This is undoubtedly false in detail for
the experiments done to date, but we shall see that this ap-
proximation exemplifies the benefit of recombination and is
quite good for describing the result of a scenario involving
the more feasible case of a finite number of crossovers. The
advantage of this “maximal” recombination is that it allows
for an analytic solution of the model, as will be presented in
the remainder of this paper. Finally, we assume simple point
mutation for each site. Namely, each nucleotide is indepen-
dently subject to mutation ratem0 per generation. This pro-
cess includes both beneficial and deleterious mutations.

It is worth pointing out that our approach to recombina-
tion may have more general applicability than merely as an
approximation for the DNA binding problem. In many cases
of DNA shuffling, the initial library of genes coding for an
interesting protein is chosen from closely related species so
as to ensure proved functionality and sufficient homology to

allow recombination. Let us imagine that the majority of the
nucleotides along those DNA sequences are already optimal,
and (nonsynonymous) mutations of these nucleotides are le-
thal. Hence, we can consider these nucleotides to be fixed
during the entire evolutionary process and ignore them ex-
cept insofar as they provide enough homology so that over-
lapping single-stranded fragments from different DNA se-
quences can anneal with each other(and do not anneal with
other fragments by accident) during the self-primed PCR re-
assembly step[7,8]. For the remainingactive sites, we as-
sume that they are(a) far enough from each other so that
recombination happens freely between any two;(b) they are
subject to point mutations with ratem0 per nucleotide per
generation. Therefore, each active site, along with its fixed
flanking homologous regions(whose size or exact delinea-
tion does not matter), constitutes a segment. To build a new
sequence from recombination, a number of overlapping frag-
ments(which when put together cover the entire sequence)
are assembled, with each fragment obtained from randomly
sampling the corresponding fragments(i.e., having the same
active site) in the selected population. This idea is depicted
in Fig. 2 and is an exact realization of our maximal recom-
bination model. Of course, one has to be careful to inter-
sperse an experimental selection step that will eliminate all
lethal variants(due to mutation) before proceeding to an ac-
tual selection based on useful variation. To proceed, we
would then have to explicitly take into account the transfor-
mation from gene sequence to amino acid, as the selection
would be on the basis of some desired activity of the protein.
We do not pursue this line of investigation any further in this
work.

Finally, we can rephrase our model in terms of the stan-
dard language of population genetics. Each site can be re-
ferred to as a locus, which can haveA alleles, one favorable
(match) and the rest(mismatches) equally unfavorable. The
set of all L loci forms a chromosome. The recombination
scheme is such that the allele of each locus of every new
chromosome is chosen by randomly sampling the alleles at
the corresponding locus of all the selected chromosomes.
The fitness value of each chromosome is 1(0), when the
number of matches it has is above(below) the thresholdm0.
For clarity, we list the correspondence in Table I.

FIG. 2. Maximal recombination under a general interpretation.
Each line represents a DNA sequence. Letters represent active sites
with variable length fixed regions in between. In building a new
sequence, each active site independently samples the corresponding
sites in the entire selected population.
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Despite its enormous practical success, theoretical analy-
sis of the evolutionary dynamics of DNA shuffling has thus
far been lacking. Sun[20], Moore and Maranas[21] pro-
posed predictive models for various experimental steps of
DNA shuffling experiments, addressing issues of recombina-
tion efficiency and distribution of fragment size during the
reassembly involved in a single round of evolution. We con-
cern ourselves instead with the evolutionary consequences of
multiple rounds. Several aspects of our evolutionary ap-
proach have been studied analytically in population genetics
[17]. Response to truncation selection in one round, under
linkage-free condition, has been characterized in the context
of classical breeding[17,22]. The effects of various recom-
bination schemes have been studied in the special case of
evolution without selection[23]. Kondrashov[24] studied a
model with a different type of dynamical fitness landscape,
where the fitness value of a genotype depends only on the
difference between its phenotypic value and the mean of the
phenotypic distribution, in units of variance of the pheno-
typic distribution. He derived evolutionary recursion rela-
tions and obtained analytical expressions that characterize
the equilibrium position, with the assumption of only delete-
rious mutations, conventional recombination, and a Gaussian
distribution before selection. The assumption of unidirec-
tional mutation is only true when the system is close to the
optimal state; the Gaussian approximation, as we shall see, is
in fact equivalent to using maximal recombination. In ge-
netic algorithms and evolutionary strategies, a research area
in computer science where the principles of evolution are
employed to find optimal solutions to complex problems
[25], a similar setting has been investigated by Mühlenbein
and Schlierkamp-Voosen[26], mostly via computer simula-
tion only.

III. MAXIMAL RECOMBINATION: DYNAMICS

To summarize the above discussion, in the language of
population genetics which we will adopt from here on, we
have a population ofN chromosomes each withL loci, and
we study the evolution with dynamical truncation selection,
maximal recombination, and point mutation as specified
above. We fix the order of operation to be selection, recom-
bination, and mutation, and keep the population sizeN con-
stant at each generation. This model is easily simulated on a
computer. The evolutionary protocols are realized in simula-
tions as follows: In producing the population in each genera-
tion, truncation selection is first used on the population of the

previous generation to find the parental group. Then, each
member chromosome of the population in the current gen-
eration is built by randomly sampling the parental group to
find its parents, inheriting the parents’ chromosomes accord-
ing to the recombination scheme used, and mutating the re-
sulting chromosome. Figure 3 shows simulation results for
evolutionary trajectories of the average and variance of the
match distribution under weak selection. For comparison, we
show results from four different evolutionary protocols: no
recombination, single random crossover, multiple crossovers
and multiple parents(which is the situation closest to experi-
ments), and maximal recombination. It is evident that recom-
bination improves both the dynamics and equilibrium state
as compared to the case with no recombination. For our phe-
notypic landscape and selection scheme, the more recombi-
nation the better. Furthermore, the maximal recombination
scheme captures the essential effect of recombination and
provides a reasonable approximation to the more readily
achievable case of multiple crossovers from multiple parents.
In the alternative case of strong selection(not shown), all
evolutionary protocols propel the population to an equilib-
rium state very close to the optimal state; however the popu-
lation reaches the equilibrium state much faster when recom-
bination is applied.

In our analytical work we will assume, unless specifically
noted otherwise, the population sizeN to be very large so
that random genetic drift is negligible; we will briefly discuss
finite-size effects at the end. We focus on the evolution of
such macroscopic characteristics of the population as mean
and variance, as opposed to “microscopic” properties such as
the fate of individual mutations. As already noted, the fitness

TABLE I. The correspondence between two languages: directed
molecular evolution and population genetics.

DNA-protein binding Population genetics

DNA sequence Chromosome

Nucleotide Locus

Binding energy Phenotypic value:matches

Selection via binding to protein Dynamical truncation selection

Correlation of nucleotides Linkage

FIG. 3. Comparison of evolutionary trajectories for four differ-
ent evolutionary protocols under weak selection. Shown are simu-
lation results of the evolutionary trajectory of the average number
of matchesm̄ for the population, with an initial clonal population
(i.e., a population consisting of clones of a single chromosome)
with no matches at any locus along the chromosome. X, no recom-
bination; triangle, recombination with one random crossover;
square, recombination with multiple crossover and multiple parents,
using a per bond crossover probability of 0.025. Circle: maximal
recombination. Shown in the inset are the corresponding variances
of the distributions vs time, ordered in the same way as the matches
vs generations curves. Here sequence lengthL=170, selection
strength f=0.9, mutation ratem0=0.01, and population sizeN
=104.
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distribution itself does not describe the evolution. We instead
study the evolution of the phenotypic(match) distribution,
focusing on its first and second moments. For simplicity we
assume linkage equilibrium at the beginning of evolution.
This is in fact not a stringent assumption, since linkage equi-
librium is achieved anyway right after one round of recom-
bination.

A. Dynamics without mutation

We start from the simplest case where the mutation rate
m0 is set to be 0. We assume that each locus has the same
binary distribution characterized by the probability of being
favorable(i.e., a match) ps0dsÞ0d. This is in fact the case
most relevant to the DNA shuffling experiments to date,
wherem0 is kept extremely small and the diversity is almost
entirely provided by the diversity which existed in the initial
library [5]. Starting from the homogeneous initial condition,
we expect that every locus follows the same evolution tra-
jectory, as the evolution dynamics preserve permutation sym-
metry of different loci. With this in mind, we focus on the
evolution of the probabilitypstd for one locus to be favorable
at the end of generationt. The phenotypic probability distri-
bution for the number of matches of a chromosome at the
end of roundt is then a binomial distribution characterized
by meanLpstd. Assuming thatL is large(For an exact mean-
field treatment without the assumption of largeL, see Appen-
dix A), the binomial distribution is well approximated by a
Gaussian distributionPsm,td:

Psm,td =
1

Î2ps2std
expS−

fm− m̄stdg2

2s2std
D , s2d

m̄std = Lpstd, s3d

s2std = Lpstdf1 − pstdg. s4d

Given such a distribution at the end of generationt, we
now discuss step by step the effects on the distribution due to
various operations in the evolutionary protocol. In generation
t+1, selection cuts out the lowm tail of the Gaussian distri-
bution. It is straightforward to calculate that the mean match
number of the selected populationm̄s is

m̄→ m̄s = m̄+ sGsfd. s5d

The new mean can thus be expressed as the old mean plus an
improvement due to selection, which is simply the product of
the old standard deviation and a factorGsfd that solely en-
codes the strength of selection[Gsfd is called intensity of
selection in population genetics literature] [27]. HereGsfd is
the mean for the normalized distribution resulting from a
standard Gaussian distribution truncated by a 1−f fraction
taken off the tail, namely,

Gsfd =
1

Î2pf
expS−

1

2
Xsfd2D , s6d

whereXsfd is the match threshold defined through

f =E
Xsfd

` dx
Î2p

expS−
1

2
x2D . s7d

For completion, we show the behavior ofGsfd in Fig. 4. For
0.3,f,1, Gsfd is approximately a linear function off
(with slope roughly −1.5), andGsfd→ s1−fdÎ2 lns1−fd−1

as f→1. In the strong selection limit, i.e.,f→0, Gsfd
→Î2 ln f−1, which diverges.

After selection, the recombination step restores the inde-
pendence of each locus. The population distribution of
matches returns to a binomial(Gaussian) distribution char-
acterized by meanm̄s:

m̄r = m̄s, s8d

sr
2 = m̄rs1 − m̄r/Ld. s9d

Because of the independence of each locus, we can reexpress
Eq. (8) in terms of individual match probabilitypr andpstd:

pr = pstd +
Îpstdf1 − pstdg

ÎL
Gsfd, s10d

and the variance of the distribution is simplyLprs1−prd.
Equation(10) has two features: First, the scaled combination
of Gsfd /ÎL is the single control parameter. Second, the
change ofp is proportional to the square root of the variance.

In the case of weak selection, Eq.(10) can be approxi-
mated by its continuous-time version:

dp

dt
=

Gsfd
ÎL

Îps1 − pd. s11d

The evolutionary dynamics is governed by two fixed points:
p=0 andp=1. p=0 is a trivial unstable fixed point. When
ps0d.0, the population moves towardp=1. The entire so-
lution is

FIG. 4. The selection factorGsfd. Gsfd diverges at strong se-
lection f→0 and goes to zero at weak selectionf→1.
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pstd = 50, ps0d = 0

1

2F1 − sinSb −
Gsfd
ÎL

tDG , ps0d . 0,
s12d

where b=sin−1f1−2ps0dg. Equation (11) and its solution
have also been derived in Mühlenbein and Schlierkamp-
Voosen [26]. From this we see that the system actually
reaches the optimal state in a finite time, rather than ap-
proaching exponentially. This is due to the square-root be-
havior of the velocity nearp=1 noted above.T is given by

T = Sp

2
+ bD ÎL

Gsfd
. s13d

To appreciate this result and the benefit of recombination,
it is helpful to compare it with that of pure enrichment(i.e.,
selection only), given the same initial condition. Starting
from ps0d, the population distribution initially is a binomial
distribution. Selection keeps narrowing down the distribution
by chopping off its low tail round by round, and stops when
the distribution contains only the perfect state withL
matches. Note that since here we care about the extreme tail
of the distribution, the Gaussian approximation is no longer
adequate. Based on this scenario, to determine the evolution
time T, we look at the fraction of population in the perfect
state. In the beginning, the fraction isps0dL. At round t, the
fraction becomesps0dL /ft. Therefore, the evolution timeTA

is determined by the condition thatps0dL /fTA =1. Therefore

TA = L
ln ps0d
ln f

. s14d

Equations(13) and (14) show that the evolution time scales
differently with L in the two cases; asÎL in the case with
recombination and asL in the case of pure enrichment. This
means that the longer the chromosome, the greater the ben-
efit of recombination. When selection is weak but not ex-
tremely close to 1(weak so that continuous-time approxima-
tion is appropriate, but not too close to 1 so that around the
threshold the tail that is cut off is still Gaussian-like), the
chromosome is long andps0d is neither close to 0 nor close
to 1 (so that Gaussian approximation is appropriate), the es-
timate of evolution time given in Eq.(13) is applicable. In
this case,

T

TA
<

p/2 + sin−1f1 − 2ps0dg
− ln ps0d

1
ÎL

1
Î− 2 lns1 − fd

, s15d

clearly showing the superiority of the evolution protocol in-
volving maximal recombination. In other cases, Eq.(13) is
no longer appropriate. For example, Eq.(13) predicts a finite
evolution time even in the limit ofps0d→0, an artifact of the
approximations involved. In Appendix A, we discuss the
benefit of recombination under this limit, making use of the
formalism developed there, which is not limited by the ap-
proximations mentioned above.

We have shown that recombination provides a significant
improvement whenL@1 and selection is weak. In general,
at the mean-field level, recombination is at least not worse

and in most cases it is beneficial. Though a rigorous proof is
not yet available, the basic mechanism at work, as has been
presented by population geneticists(see, e.g., Ref.[3] and
references therein), is as follows: Selection, as it operates on
the phenotype, generally introduces correlation between dif-
ferent loci on a chromosome. In the current case where the
selection is via truncation, the correlation shows up as a nar-
rowing of the population distribution in terms of matches.
After selection, maximal recombination completely breaks
up the correlation between loci, resulting in a broader distri-
bution (see Fig. 3 inset). A broader distribution leads to bet-
ter response to subsequent selection and hence faster evolu-
tion. In other words, without recombination, the unit of
selection is the chromosome; with recombination, selection
unit goes down to locus level, so that different loci evolve in
a more parallel fashion.

B. Dynamics with mutation: homogeneous initial condition

So far, we have studied the dynamics of maximal recom-
bination in the absence of mutation. Now we insert the point
mutation process into the evolutionary dynamics. As a first
step, we again assume a homogeneous initial condition such
that each locus has the same probability of being favorable
(i.e., a match) ps0dsÞ0d. Mutation is the final step of the
round. Since we only consider single base mutations, linkage
is not introduced in the process. The mutation process we
consider here includes both beneficial and deleterious muta-
tions; by itself, it drives the chromosomes toward the maxi-
mum entropy pointL /A (or 1/A in terms ofp), which is in
general opposite to the direction of selection. A simple cal-
culation yields

pm = pr +
m0

A − 1
s1 −Aprd. s16d

Combining this equation with Eq.(10), we obtain a recursion
relation for the evolution ofp:

pst + 1d = pstd +
m0

A − 1
f1 −Apstdg +

Gsfd
ÎL

Îpstdf1 − pstdg,

s17d

where we have dropped a correction factorf1+m0A / sA
−1dg in the last term, sincem0!1. It is clear that the second
term on the right-hand side of the recursion relation is due to
mutation, and the third term to selection and recombination.
When the third term dominates the second term, the dynam-
ics is essentially the same as that with no mutation as dis-
cussed above. Whenp exceeds the maximum entropy point
1/A, the mutational contribution becomes harmful to the
evolution.

The recursion relation, Eq.(17), has an interesting feature.
If we divide Eq.(17) by m0 on both sides, we have
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pst + 1d − pstd
m0

=
1

A − 1
f1 −Apstdg +

Gsfd
m0

ÎL
Îpstdf1 − pstdg.

s18d

Equation(18) says that the scaled combinationGsfd / sm0
ÎLd

is the single control parameter. In other words, if different
choices of parameters result in the same combination
Gsfd / sm0

ÎLd, the corresponding dynamics are exactly the
same as long as the time scale in each case is rescaled by its
respective mutation ratem0. Note that in Eq.(17) or Eq.(18),
pstd can go above 1 when selection is strong; this unrealistic
result comes from the Gaussian approximation to the popu-
lation distribution that becomes inaccurate when the popula-
tion reaches the neighborhood of the optimal state. We will
further address the error due to the Gaussian approximation
in our discussion of the equilibrium state.

As a test of our theory, Fig. 5 shows that the theoretical
predictions, including the scaling withGsfd / sm0

ÎLd, agree
extremely well with simulation data. This indicates that the
finite-population effect in this landscape is insignificant, and
the Gaussian approximation to the binomial distribution is
appropriate for sequences of long lengthL.

When selection is weak so that the change inp in each
round is small, the evolution equation(17) can again be ac-
curately approximated by its continuous-time version,

dp

dt8
= s1 −Apd + CÎps1 − pd, s19d

where t8;fm0/ sA−1dgt and C;sA−1dGsfd / sm0
ÎLd. The

explicit solution of this equation can be found in Appendix
B.

An explicit analytical comparison of the evolutionary per-
formance between the evolutionary protocol with and with-
out recombination is not available. Both recombination and
mutation can serve to generate diversity, but the greater ben-
efit of recombination is due to that facts that(a) recombina-
tion breaks up the correlation of loci along the chromosome
introduced by selection much more effectively than mutation

does; breaking of linkage helps broaden the distribution(as
selection narrows the distribution) and in turn facilitates
more efficient future selection, hence speeding up the evolu-
tion, and(b) recombination keeps the mean of the population
unchanged, whereas mutation goes against selection(once
the population goes beyond the maximum entropy point).
Therefore, as has been recognized for a long time, recombi-
nation is able to generate variety without the excessive bag-
gage of deleterious mutations.

C. Dynamics with mutation: inhomogeneous initial condition

In the previous discussions, we assumed a simple homo-
geneous initial condition. An immediate question concerns
what happens with a inhomogeneous initial condition, i.e.,
would different loci synchronize with each other after a short
transient period or would they go their separate ways and
only meet at the end of the process? To answer this question,
we choose a linkage-free initial condition where half of the
loci have probabilityp1s0d of being a match, and the other
half have probabilityp2s0d of being a match. Assuming again
that L@1, a similar derivation to the one presented above
produces

p1st + 1d = p1std +
m0f1 −Ap1stdg

A − 1

+
Gsfd
ÎL/2

p1stdf1 − p1stdg
Îp1stdf1 − p1stdg + p2stdf1 − p2stdg

,

s20d

p2st + 1d = p2std +
m0f1 −Ap2stdg

A − 1
+

Gsfd
ÎL/2

3
p2stdf1 − p2stdg

Îp1stdf1 − p1stdg + p2stdf1 − p2stdg
.

Figure 6 compares these results with an evolutionary tra-

FIG. 5. Comparison of simulation results and theory. The evo-
lutionary trajectories of three simulations with totally different pa-
rameters[but same scaling variableGsfd / sm0

ÎLd] collapse into a
single curve when time is properly rescaled, and this curve agrees
well with the theoretical result obtained from Eq.(17). Here the
three simulations all start from a homogeneous initial condition of
ps0d=0.1 and population sizeN=104.

FIG. 6. Evolution of individual match probabilityp with inho-
mogeneous initial condition. The initial condition is chosen so that
half of the loci have initial match probability ofp1s0d=0.1, while
the remaining half hasp2s0d=0.6. The two simulation curves track
the two different groups of loci. The solid curves are theoretical
results from Eq.(20). Simulations use the following parameters:
L=170,f=0.9, m0=0.01, andN=104.
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jectory with inhomogeneous initial conditions. It is clear that
different loci go their own ways.

If mutation is negligible, one finds that the relative
changes in the individual match probabilities are

p1st + 1d − p1std
p2st + 1d − p2std

=
p1stdf1 − p1stdg
p2stdf1 − p2stdg

, s21d

i.e., proportional to the ratio of the variance on each locus. In
other words, the selection works on variance; different loci
with different p experience different selection pressures de-
pending on their contribution to variance. In the case of in-
homogeneous initial conditions, this means that the evolu-
tionary process will be slowed down by loci having very
small initial ps0d; see Fig. 7 for explicit examples.

It is worth mentioning that although systems with differ-
ent initial conditions follow different evolutionary paths,
they end up with the same equilibrium state. Recombination
is beneficial to the evolutionary progress even when the ini-
tial condition is inhomogeneous.

D. Dynamics with mutation: clonal initial condition

In the above theoretical analysis we have assumed an ini-
tial condition which already has all the favorable alleles
available in the population, and mutation was relatively un-
important. In many situations, mutations are absolutely nec-
essary for the system to find the optimal state. This scenario
could happen for a system prepared with a clonelike initial
condition with some loci lacking the beneficial alleles. In this
section we focus on this case and study the effect of different
mutation rates on the evolutionary dynamics. We use a clonal
initial condition, where all members of the population are
clones to each other, with no beneficial allele at any locus
[i.e., ps0d=0]. For this simple case, the obviously best strat-
egy is to subject the system to maximal mutation ratem0
=sA−1d /A until the system reachesp=1/A, and then to
stop mutation altogether. However, this naive strategy does
not apply to other clonal initial conditions which are inho-
mogeneous; here it is nota priori clear when one should turn

off mutation, since we have access only to measurements of
the full phenotype.

Assuming that mutation rate is fixed, we can gauge the
performance of different choices of mutation rate by measur-
ing p after a given number of generations. Figure(8) shows
a comparison of simulations starting atps0d=0 with different
mutation rates using this criterion. It is clear that there is an
“optimal” mutation rate. Of course, the optimal mutation rate
depends on when evolution is terminated. In the more com-
mon situation, a majority of the loci are already occupied by
beneficial alleles, and for the rest, mutation is required to
create the beneficial allele. In this case as well, we can see
the existence of an optimal mutation rate, as in Fig. 9.

In conclusion, mutation is necessary when there is limited
diversity in the initial library. Even in this case, mutation is
only helpful in the short term dynamics, but harmful to the
equilibrium state. In a realistic experiment, since breeding
usually proceeds for a only few generations there would exist
an optimal mutation rate.

IV. MAXIMAL RECOMBINATION: EQUILIBRIUM STATE

Having studied the dynamical behavior of the model in
the previous sections, we now turn to the study of its equi-

FIG. 7. Comparison of simulation results for the average indi-
vidual match probabilityp̄ for different initial conditions, in the
absence of mutation.p̄ is the individual match probabilityp aver-
aged over loci. HereL=170,f=0.9, andN=104.

FIG. 8. Simulation results of different mutation rates given a
clone initial condition ofps0d=0. (a) Evolutionary trajectories for
different choices of mutation ratem0. (b) Comparison of individual
match probability at the tenth generationps10d for different muta-
tion rates. The “optimal” mutation rate is aroundm0=0.08 under
this condition. HereL=170,f=0.1, andN=104.
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librium properties, focusing on the mean number of matches
in equilibrium. This quantity plays the role here that genetic
load does in normal evolution problems. Strictly speaking,
genetic load is the difference in fitness between the equilib-
rium population and the optimal fitness state. In our case, the
optimal state has fitness value 1, and the mean fitness of the
population is simplyf, so the difference is trivially 1−f.
However, since the purpose of the experiments is to maxi-
mize the phenotypic value, i.e., the number of matches, the
mean number of matches is a reasonable way to characterize
the equilibrium state, and the “cost” of mutations. Going
back to the language of DNA-protein binding, we are using
the mean binding affinity of the DNA sequence to character-
ize the equilibrium.

Under the Gaussian approximation, the equilibrium value
p̂ can be found by settingpst+1d=pstd in Eq. (17), yielding

p̂s1 − p̂d
sAp̂ − 1d2 =

1

sA − 1d2Sm0
ÎL

Gsfd
D2

. s22d

As shown in Fig. 10, for weak and intermediate selection
strength this result agrees with the simulation data. For the
parameter regime of strong selection(or very small mutation
rate), m0

ÎL /Gsfd is no longer a good scaling variable, and
the Gaussian approximation begins to deviate from the exact
result.

For weak selection(i.e., fm0
ÎL /Gsfdg2@1) the equilib-

rium probability is near 1/A. We have

p̂ −
1

A =
sA − 1d3/2

A2

Gsfd
m0

ÎL
. s23d

When selection is relatively strong, i.e., when
fm0

ÎL /Gsfdg2!1, the equilibrium position is

1 − p̂ = Sm0
ÎL

Gsfd
D2

. s24d

As shown in Fig. 10, for the parameters employed there, this
power law is accurate in the region of 0.1
øm0

ÎL /Gsfd,1. [A more precise statement about the
lower cutoff for the validity of Eq.(24) is m0L. ln f−1; see
discussion below]. This m0

2 dependence has also been de-
rived by Kondrashov[24] for a different type of dynamical
selection scheme.

It is well known that in a fixed smooth landscape, the
mutational load ism0L in the strong selection limit. We see
from the above that for our breeding problem, strong selec-
tion, at least in the Gaussian approximation, produces a load
that scales withm0

2 rather than the usualm0. The reason for
this scaling is easy to understand: With recombination, the
change due to selection ofpL, the number of matches, is
proportional to the width of the distributionÎLps1−pd
<ÎLs1−pd (which is independent of the Gaussian approxi-
mation), and mutation reducespL by −m0L. Balancing the
two effects we arrive at them0

2 scaling. This simple argu-
ment shows that them0

2 law is a generic result for the ge-
netic load when recombination is at work(which happens
whenever the selected population still occupies a number of
different states). When selection strength is sufficiently
strong that the selected population lies almost entirely in the
optimal state, recombination becomes ineffective as there is
no diversity within the selected population. As a result[as
shown in Fig. 10], the Gaussian result is no longer valid. In
fact, as we shall show below, in this case the usual muta-
tional load ofOsm0d takes over.

For small mutation rates, as we shall see, the mean mis-
match number is small at equilibrium, except for very weak
selection. This is in contradistinction to the dynamic case,
where we focused on the case where there were a large num-
ber (order L) of initial mismatches. There, for most of the
time, the Gaussian approximation is quite adequate. In equi-

FIG. 9. Simulation results for different mutation rates given an
inhomogeneous clonal initial condition. Initially, all the members of
the population are clones to each other; 1/5 of the loci are occupied
by mismatches and the rest by matches. HereL=170, f=0.1, and
N=53105.

FIG. 10. Equilibrium value of individual match probabilityp as
function of m0

ÎL /Gsfd. The y=x2 curve denotes the asymptotic
behavior ofp in strong selection(low mutation) resulting from the
Gaussian approximation, Eq.(24). For simulation results,L=170,
m0=0.01,N=104.
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librium, however, this is generically not the case, and a more
careful treatment is warranted.

To study this issue in more detail, we can make use of a
more powerful approximation scheme that accurately covers
both the strong selection and extremely strong selection
cases so as to find the equilibrium position. SinceLp,L, we
shift our focus to the mismatch probabilityq;1−p,0. Be-
fore selection, the population distribution in terms of mis-
match numberk should follow a Poisson distributionPk
=Qke−Q /k!, whereQ;Lq. Call Ck0

the cumulative probabil-
ity of being in a state withkøk0. Selection results in

f = Ck0−1 + aPk0
, s25d

wherek0 is the threshold, which is determined by the condi-
tion thatCk0−1,føCk0

. a,1 counts the partial selection on
the members of population withk0 mismatches.

The results of selection, recombination, and mutation are

qr =
1

Lf
So

k=0

k0−1

kPk + ak0Pk0D , s26d

q = qr + m0 −
A

A − 1
m0qr, s27d

whereqr sqd is the individual mismatch probability right af-
ter recombination(mutation). The last term is negligible as it
arises from extremely rare compensatory beneficial muta-
tions. Combining Eqs.(25)–(27), we arrive at the following
equation that determines the equilibrium average mismatch

numberQ̂:

f =
e−Q̂

k0 + U − Q̂ o
k=0

k0−1
k0 − k

k!
Q̂k, s28d

whereU;m0L is the genomic mutation rate. The physical

Q̂sfd curve is given by the envelope of the variousq̂sf ,k0d
for differentk0’s, and is piecewise analytic. Figure 11 shows
the difference between this solution and the solution given
by the Gaussian approximation. Even though the Gaussian
approximation has generally the right trend, for this small
mutation rate the Gaussian approximation is numerically off
by a large percentage, except for extremely weak selection.
Note also that forf,e−U, selection only preserves the opti-
mal state at equilibrium, recombination stops working, and

Eq. (28) producesQ̂=L−Lp̂=U, the conventional muta-
tional load, which is a result that is unobtainable from the
Gaussian approximation.

Now we come back to the question of how much of an
improvement is conferred by recombination. Figure 12
shows a direct comparison of the mean-field equilibrium
statep̂ with and without recombination, for the same value
of mutation ratem0 and sequence lengthL. We see that re-
combination improves the number of matches in equilibrium,
especially for intermediate selection strength. In the strong
selection limit(i.e., whenf,e−U), as discussed above, the
process of recombination is in fact neutral because of a lack
of diversity in the selected population. For the regime of

intermediate selection strength, the equilibrium position for
the maximal recombination protocol is given by Eq.(22).
For the no-recombination case, we use a result from Cohen
and Kessler[28]:

−
ln f

U
=

1

A − 1
+

A − 2

A − 1
p̂A −Î 4

A − 1
p̂As1 − p̂Ad,

s29d

when p̂A denotes the equilibrium value of total number of
matches divided by chromosome lengthL for the no-
recombination case. This expression is appropriate forLs1
− p̂Ad@1, so that selection is not too strong; andp̂A −1/A
@L−1/2, which defines the weak selection regime for the no-
recombination case. To better understand the difference

FIG. 11. Theoretical evaluation of equilibrium value of mean
mismatches: comparison of Gaussian approximation and Poisson
approximation. Curves corresponding to differentk0 values are trial
solutions of Eq.(28) with different choices of thresholdk0. The
envelope of the trial solutions is the physical solution. For compari-
son, the solution given by Gaussian approximation is also plotted.
HereL=170,m0=0.001.

FIG. 12. Comparison of equilibrium positions for two evolution-
ary protocols: maximal recombination[mean-field numerical result
from Eqs. (A6), (A8), and (A9); Gaussian approximation result
from Eq. (22)] and no recombination[mean-field numerical result
from Cohen and Kessler[28]; analytical approximation from Eq.
(29)]. HereL=170 andm0=0.001.
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shown in Fig. 12, we reexpress Eq.(24) to simplify the com-
parison with Eq.(29),

1 − p̂ = m0
U

Gsfd2 . s30d

For intermediate selection, so that −lnf /U,1 and
U /Gsfd2,1, we have thatp̂A is an Os1d function whereas
1−p̂,m0. Thus the recombination curve remains nearp̂=1
until f is close to 1, at which point it takes a sharp dive; the
no-recombination curve moves downward continuously.
Thus, if selection is not very weak, the equilibrium state
under recombination is much less sensitive to the degree of
selection, and lies very close to the optimal state.

Now, we move on to consider the region where the re-
combinationp̂ takes its dive. Here the picture is most clear in
the limit where we takeU to be a constant of order 1 andL
to be asymptotically large(or equivalently,m0 to be small
,L−1 for large L). From Eq. (22), we know that the dive
takes place at 1−f,L−1/2 (up to logarithmic corrections in
1−f), wherep̂ is of order 1 and away from both 1 and 1/A.
On the other hand, when 1−f,L−1/2, 1−f is still big
enough for Eq.(29) to be valid for the no-recombination
case. Using the smallness ofs1−fd /U,L−1/2, we find that

s1 − fd
U

, L−1/2 <
Asp̂AA − 1d2

4sA − 1d2 , s31d

showing thatp̂A is close to 1/A with corrections of order
L−1/4. Thus, we have shown(in the limit of small m0 and
largeL) that, as long as selection in the maximal recombina-
tion case is not very weak(i.e., 1−e−U.1−fùL−1/2 ), p̂ is
a finite distance from the random result 1 /A, and recombi-
nation is beneficial.

Now we move on to the weak selection regime, again
focusing on the limit of smallm0 and largeL (while main-
taining U,1). We first discuss the regime whereL−1/2@1
−f@L−1. In fact, in this regimep̂ is close to 1/A. Using the
weak selection approximation forp̂, i.e., Eq.(23), we obtain
that p̂−1/A,s1−fdL1/2. In the same regime, Eqs.(29) and
(31) are still valid for the no-recombination case, hencep̂A
−1/A,Î1−f! p̂−1/A, showing that here as well recom-
bination is beneficial. When selection is even weaker so that
1−f,L−1, p̂−1/A,L−1/2Îln L. On the other hand, the no-
recombination system exhibits the scaling[28]

p̂A −
1

A , L−1/2fS s1 − fd
m0

D , s32d

where f denotes a scaling function ofs1−fd /m0. For 1−f
,L−1,m0, we have

p̂ − 1/A
p̂A − 1/A , Îln L. s33d

Thus, in this somewhat unrealistic regime as well, the recom-
bination equilibrium position is much closer to the optimal
state. Finally, in the ultraweak selection limit, bothp̂A and p̂
converge to 1/A.

V. FINITE-POPULATION EFFECT

In the previous sections, we have assumed an infinite
population, and comparison with simulations has shown that
this approximation is appropriate most of the time. However,
under the experimentally relevant situations, where very
strong selection and very low mutation rate are employed,
finite-population effects can show up and be potentially im-
portant. As an extreme example, if we choose the best mem-
ber from the population, i.e.,Nf=1, then recombination has
nothing to work with and offers no benefit. In this section we
discuss the population size above which the evolutionary dy-
namics and equilibrium can essentially be deemed the same
as those of infinite populations. To rid ourselves of the im-
pact of initial conditions, we assume an initially diversified
population. Two population sizes are relevant for this prob-
lem, the total population sizeN at the beginning of each
generation, and the selected population sizeNf. We will
focus on the case most often encountered inin vitro evolu-
tion experiments, namelyN very large, butNf is rather
small. In the following analysis, we setf constant, and com-
pare the evolutionary trajectory for different population sizes
N. We start again from the simplest case of no point muta-
tion, shown in Fig. 13(a). It can be seen that in general the
smaller the population size, the worse the evolutionary effi-
ciency and the equilibrium state. Under these conditions, the
finite-population effect comes from the genetic association
between loci that results in the loss of favorable alleles from
the entire population when the population is subject to selec-
tion.

We can estimate the population sizeN0 above which the
population dynamic approaches infinite-population results by
estimating the average number of lost favorable alleles at all
loci in the selected population. As the individual match prob-
ability p is lowest at the beginning of evolution, if there is
any loss of favorable allele, it is most likely to happen at the
first round of selection, hence we focus on the first round of
selection and recombination. Right after the first round of
selection, the probability for a specific locus to lose the fa-
vorable allele isf1−ps1dgNf. Therefore the average number
of loci losing the favorable allele isLs1−pdNf. The opposite
way of saying this is that for the population to retain favor-
able alleles at all loci after the first round of selection, we
requireLs1−pdN0f,1. This gives the following estimate of
N0:

N0 =
1

f

− ln L

lnf1 − ps1dg
, s34d

where ps1d=ps0d+GsfdÎps0df1−ps0dg /L. If in the first
round the above criterion is met, then it is less likely for the
population to lose any favorable alleles at successive rounds
when subject to selection, aspstd increases in later rounds
and Ls1−pdNf becomes increasingly smaller than 1. Com-
parison with simulation results shows that Eq.(34) gives a
reasonable estimate(at least correct in order of magnitude).

When a(weak) point mutation is involved, the dynamics
can be separated into two regimes:(a) recombination domi-
nated evolution, where for loci that have a favorable allele in
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them, recombination helps those favorable alleles to spread
to the whole population, as in the mutation-free case, and(b)
mutation/recombination evolution, where loci that have lost
their favorable alleles due to selection need mutations to find
them again. The dynamics in this regime is significantly
slower, as seen in Fig. 13(b). In this case, Eq.(34) still iden-
tifies the smallest population sizeN0 that behaves more or
less like an infinite population. As a side note, the flip side of
the finite-population issue is that there exists an optimal se-
lection pressure for a particular population size; an estimate
of this optimal f can be found from the conditionLs1
−pdNf,1.

The estimate ofN0 given f (or equivalently the optimal
f0 given N) has practical implications. It gives a population
size that is just enough for the evolution to proceed at its
fastest rate(given a selection strength). Since in real-life ex-
periments selection routinely involves screening the popula-
tion, which is costly and time consuming, a smaller while
still equally effective population size would be helpful. Of

course, the above arguments assumed a random initial li-
brary. If one starts from a population of a single clone, then
as already explained above, even at the beginning mutation
is absolutely necessary to generate diversity. For this case it
is more difficult to directly estimate the finite-population ef-
fects.

VI. DISCUSSION

In this work we proposed and studied a simplified model
of DNA shuffling, a very important evolutionary protocol for
directed evolution. We investigated this model from a popu-
lation genetics’ point of view, as a multilocus evolutionary
model incorporating both recombination and point mutation
and subject to dynamical truncation selection. Our specific
recombination scheme, as an extreme limit of multiparent
multicrossover genetic mixing employed in DNA shuffling,
enables us to pursue analytical results for the dynamical and
equilibrium features. To summarize, we derived the recursion
relations that completely characterize the evolutionary pro-
cess, which shows explicitly how recombination helps to
speed up the evolution. Assuming a large number of loci, we
found that selection and mutation affect the evolutionary pro-
cess only through a combination of their respective param-
eters. When the evolution is relatively slow so that the dis-
crete recursion relation can be approximated by a continuous
differential equation, we could solve for the evolutionary tra-
jectory, and rigorously prove in special cases that it is indeed
faster than that for the case without recombination. We also
investigated how different initial conditions and mutation
rates affect the evolutionary trajectory. As to the equilibrium
properties of the system, we found that the genetic load has a
scaling form different from that without recombination, as
long as the selection is not too strong. We also showed that,
in terms of equilibrium state, recombination will help the
most when selection is neither too strong nor too weak. At
the end, we discussed the finite-size effect under conditions
relevant to the shuffling experiments, and estimated the mini-
mal population size above which the population behaves like
an infinite population.

We have been focusing on a model with specific condi-
tions, but our results are actually applicable to broader situ-
ations. Let us first discuss selection.

(a) For simplicity, we employed a dynamical trunca-
tion selection. In the case of DNA sequence evolution via
binding to protein, selection is “smoother”(i.e., the step cor-
ners are rounded[13,15]). This simplification does not cause
any substantial difference in our analytical results as long as
the change in binding affinity is large(i.e., the step is steep
enough).

(b) Our approach and results are also applicable to the
type of dynamical(soft) selection studied by Kondrashov
[24]. There, the selection is implemented as a functionWsXd,
whereX=sm−m̄d /s, i.e., the phenotypic difference between
the phenotype and the meanm̄, divided by the standard de-
viation s of the phenotypic distribution. The effect of this
type of selection on a population with a Gaussian distribution
is

FIG. 13. Finite-population effect on the dynamics and equilib-
rium of maximal recombination: Simulation results for the case of
(a) no mutationsm0=0d and (b) weak mutationsm0=0.001d. With
mutation, two regimes exist:(a) at the beginning recombination
dominates evolution, as in the mutation-free case and(b) at later
stages mutations are essential, as they are needed to find lost favor-
able alleles. Here evolution is constrained by the rate for mutation
to find beneficial alleles, thus slower. HereL=170, f=0.001.
Infinite-population trajectories are theoretical results taken from Eq.
(17).
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ms − m= sd, s35d

where d is a quantity solely characterized by the selection
function WsXd and does not depend on the population phe-
notypic distribution[see Eqs.(7) and (14) of Kondrashov
[24]]. It is evident that Eq.(35) is analogous to Eq.(5) ex-
cept that one needs to replaceGsfd with d. Therefore, when
one exchangesGsfd with d, all our results under the Gauss-
ian approximation remain valid, including various scaling
arguments and solutions to the continuous evolutionary
equations.

Now we move to recombination. One immediate question
is what would change when the recombination scheme is
more realistic. A straightforward generalization of the maxi-
mal recombination toward the realistic situation is that we
can cut each DNA sequence into segments of equal length,
with the maximum recombination as the extreme case of
length equal to 1. Computer simulations show that in general
the longer the segment length, i.e., the less crossovers for
each chromosome, the worse the performance. For a general
segment length, one can derive a hierarchy of recursion re-
lations that relate the cumulants of the population distribu-
tion at the current generation to those of previous generation,
an approach that has been applied to a multilocus system on
a fixed landscape[29,30]. How to close the chain of recur-
sion relations remains to be studied. The difficulty is associ-
ated with the remaining linkage within each segment. In any
event, the maximal recombination model can serve as a the-
oretical upper limit which is qualitatively correct and even
reasonably accurate quantitatively.

Our study has been guided by thein vitro evolution pro-
cess, where the intensity of recombination and mutation are
both prescribed by the experimenter. This might not be the
case in a more natural setting, where the evolution of recom-
bination (mutation) itself can be an important aspect of the
problem [31]. Our model does not incorporate a modifier
gene that explicitly controls recombination rate. In such a
modifier approach, the recombination rate can itself evolve
because the modifier gene is under indirect selection due to
its association with other genes on the same chromosome
under direct selection[31].

Finally, we believe that our model may be relevant to
some examples of natural evolution:(a) dynamical trunca-
tion selection can also exist in nature, for example, the mu-
tual selection in a host-parasite system and(b) recombina-
tions of multiparent, multicrossover type do exist in nature:
certain RNA viruses have multiple segments in their genome,
and when multiple viruses infect the same host and new vi-
rus particles are made, recombinations of the type we study
can happen[32]. With the ease of analytical treatment of this
model, we hope it can serve as a theoretical starting point for
understanding interplay among various aspects such as re-
combination, mutation, and selection, and as a testing ground
where general statements can be tried out.
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APPENDIX A: EVOLUTIONARY RECURSION RELATIONS
FOR ARBITRARY CHROMOSOME LENGTH

In the discussion of the evolutionary dynamics and equi-
librium state, we make use of a Gaussian(and a Poisson
distribution) to approximate a binomial distribution, which is
accurate whenL@1 (except for the tails of the distribution).
In fact, one can relax this condition and work directly with
the binomial distribution, with the help of special function
Ixsa,bd, the incomplete Beta function.Ixsa,bd is defined as
[33]

Ixsa,bd =
1

Bsa,bd
E

0

x

dt ta−1s1 − tdb−1, sA1d

whereBsa,bd is the complete Beta function.
The probability density ofm matches is a binomial distri-

bution,

Ppsm,Ld ; CL
mpms1 − pdL−m. sA2d

The cumulative probability density(for m.0) is related
to the incomplete Beta function via

o
i=m

L

Ppsi,Ld = Ipsm,L + 1 −md,m. 0. sA3d

We have, at the selection,

f = aPpsm0,Ld + o
i=m0+1

L

Ppsi,Ld, sA4d

where againm0 is the threshold and population members at
the state withm0 matches may be partially selected.

The new individual match probability after selection and
recombination is

Lpr =
1

f
Sam0Ppsm0,Ld + o

i=m0+1

L

iPmsi,LdD . sA5d

Incorporating the mutational process and making use of
Eq. (A4), we have, for 0,m0,L,

pt+1 =
m0

A − 1
+

1 −
A

A − 1
m0

Lf
fm0f + LptIpt

sm0,L − m0d

− m0Ipt
sm0 + 1,L − m0dg, 0 , m0 , L, sA6d

where we made use of the following identity:

o
i=m0+1

L

iPpsi,Ld = LpIpsm0,L − m0d. sA7d
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There are two special cases where the recursion relation
in Eq. (A6) needs to be modified. Whenm0=0,

pt+1 =
m0

A − 1
+ S1 −

A
A − 1

m0Dpt

f
,m0 = 0. sA8d

Whenm0=L,

pt+1 = 1 −m0,m0 = L. sA9d

The dynamics and equilibrium properties follow from Eqs.
(A6), (A8), and(A9). Figure 14 shows that, when the chro-
mosome lengthL is short, indeed this approach significantly
improves the agreement with simulations.

Making use of the formalism developed above, we now
revisit the issue of evolution time when the mutation rate is
zero. In Sec. III A we used Gaussian approximation to ana-
lyze the problem. As mentioned there, the result obtained has

a number of serious limitations. Here we focus on theps0d
,0 limit. Assuming selection is weak, one would expect that
during the early stage of the evolutionm0=0. At this stage,
we have

pt+1 = pt/f. sA10d

The thresholdm0 increases above 0 when the probability
density at state 0,f1−ps0d /ftgL, is less than 1−f. Hence the
time T0 it takes the population to increase its threshold above
0 is

T0 =
ln ps0d
ln f

−
lnf1 − s1 − fd1/Lg

ln f
. sA11d

Using Eq.(12) for estimation of the evolution time after the
early stage, we obtain the total evolution time as

T =5T0 + Fp

2
+ sin−1f2s1 − fd1/L − 1gG ÎL

Gsfd
, 1 − ps0d . s1 − fd1/L

Fp

2
+ sin−1f1 − 2ps0dgG ÎL

Gsfd
, 1 − ps0d ø s1 − fd1/L.

sA12d

The first case is forps0d small, with the initial selection
thresholdm0=0. The second case is forps0d not particularly
small, with the initial selection thresholdm0.0. How good
is this estimate? Figure 15 shows the comparison of the evo-
lution time between the exact mean-field result[obtained by
following recursion relations in Eqs.(A6), (A8), and (A9)]
and the approximation obtained in Eq.(A12). The agreement
between the two is reasonably good overall.

Now that we have an estimate that is applicable even for
small ps0d, let us compare the evolution time for maximal
recombination with that for pure enrichment, in the limit of
ps0d→0. T and TA are both proportional to lnps0d / ln f.
However, in the case of enrichment, the singularity is asso-
ciated with chromosome lengthL [see Eq.(14)], whereas for
maximal recombination,L only appears in the nonsingular

FIG. 14. Comparison of two theoretical approaches with simu-
lation result. Solid curve is the result of Eq.(A6). Dashed curve is
the result of Eq.(17). HereL=10, f=0.9, andm0=0.001. For the
simulationN=104.

FIG. 15. Comparison of the evolution time for maximal recom-
bination between the exact mean-field result and the approximation.
The exact mean-field result is obtained from Eqs.(A6), (A8), and
(A9). The approximation is given in Eq.(A12). Here L=100, f
=0.9, andm0=0.
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part. Therefore, in the smallps0d limit, maximal recombina-
tion is again beneficial.

APPENDIX B: EXPLICIT SOLUTION OF THE
EVOLUTION EQUATION

Assuming that att=0 the individual match probability is
ps0d, the continuous-time approximation of Eq.(18) is

dp

dt8
= s1 −Apd + CÎps1 − pd, sB1d

where t8;fm0/ sA−1dgt and C;sA−1dGsfd / sm0
ÎLd. This

continuous-time approximation is appropriate when change
of p between consecutive rounds is small(i.e., when selec-
tion is not very strong). For most parameter values the right-
hand side is positive, thereforep keeps increasing. The gen-
eral solution of Eq.(B1) is

A2 + C2

2
t8 = −

A
2

ln
u1 −Ap + CÎps1 − pdu

u1 −Aps0d + CÎps0df1 − ps0dgu

+
Cs1 −A/2d

ÎD
Fln

u2Îs1 − pd/p + C − ÎDu

2Îs1 − pd/p + C + ÎD

− ln
u2Îf1 − ps0dg/ps0d + C − ÎDu

2Îf1 − ps0dg/ps0d + C + ÎD
G

− CStan−1Î1 − p

p
− tan−1Î1 − ps0d

ps0d
D ,

sB2d

where D;C2−4s1−Ad. In the absence of mutation the
above equation has been solved, the solution a sinusoidal
function [see Eq.(12)]. The other extreme situation is when
the selection strengthf is 1, which leads toGsfd=0 and
C=0. In this casep goes to 1/A exponentially with time
constant −lnf1−Am0/ sA−1dg<Am0/ sA−1d.
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