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DNA shuffling is an evolutionary protocol wherein cycles of selection, recombination, mutation, and am-
plification are employed to evolve proteins and DNA sequences. Experiments have shown its superiority to
traditional protocols which do not employ recombination. Motivated by DNA shuffling, we investigate a
multilocus evolutionary model that incorporates selection, recombination, and point mutations. Due to sim-
plicity of the model, for the case of an infinite population we can obtain a full analytical treatment of both its
dynamical and equilibrium properties, and study the benefit of recombination explicitly and quantitatively. We
also briefly discuss finite-population size corrections.
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I. INTRODUCTION one, i.e., two parents with at most a few crossovers. The

Recombination, i.e., the exchange of genetic informationmultiparent multicrossover nature of DNA shuffling, as we
is a Widespread phenomenon in both prokaryotes and e|§ha” see, makes it more effective, and also, incidentally, al-
karyotes. In prokaryotes, recombination happens occasiohews for an exact analytical treatment. Second, in the setting
ally, mediated by phages, direct cell-cell contact, or directof DNA shuffling the relationship between genotype, pheno-
uptake of free DNA from the environmeftt]. In eukaryotes, type, and fitness is relatively clear and well defined. In addi-
recombination between homologous sequences is a fund&en, such parameters as selection strength, mutation rate,
mental component underlying sexual reproductj@h An  and the amount of recombination are all experimentally con-
enormous body of research has been devoted to understartdsllable. These characteristics should allow theoretical re-
ing the evolutionary benefit of recombination in various cir- sults to be tested directly against experiments.
cumstances. This effort has led to some general understand- Specifically, we propose a simple model that incorporates
ing of the circumstances under which recombination helpshree basic ingredients: selection, recombination, and point
facilitate evolution, however, many important questions stillmutations. In order to facilitate comparison with various ex-
remain operi3], one important reason lying in the difficulty isting evolutionary models, we present our ideas in the lan-
in theoretical treatmentsl]. guage of population genetics. In this language, we study a

Inspired by recombination in natural evolution, and pro-haploid(i.e., each individual carries a single copy of every
pelled by advances in biotechnology, recombination has beegeng multilocus model with multiparent free recombination,
employed inin vitro molecular evolution experiments to de- and subject to dynamical truncation selection, wherein the
velop proteins and DNA sequendés6]. This family of evo-  fitness of a genotype depends on the population state. We
lutionary protocols, called DNA shufflingor molecular obtain analytical results for both the dynamics and the equi-
breeding [7,8], has been shown experimentally to producelibrium properties, and gain insights into not only why, but
in terms of the rate of evolutionary progression and finalalso how exactly recombination works. This is one of the
product quality, far superior results as compared to convernrare cases in population genetics where exact results can be
tional directed evolution methods using only mutagenesi®btained for a nontrivial multilocus modgl1].

[5,6]. In addition to its widespread practical applications, This paper is organized as follows. In Sec. Il, we present
DNA shuffling has been used to mimic natural evolutionarya model of the DNA shuffling process. We first consider the
processes and predict possible evolutionary pathyay€). relevant experimental aspects of DNA shuffling, then pro-

In spite of its enormous significance, a theoretical underpose a model that includes all the key ingredients yet is
standing of DNA shuffling has been lacking. In this paper,simple enough to allow analytical analysis, at least for the
we investigate DNA shuffling from the perspective of evolu- infinite population limit. In Sec. Ill, we focus on the model’s
tionary modeling. Specifically, we aim to find out, quantita- dynamical behavior, studying the role of mutation as well as
tively and analytically, the benefit that the extra step of re-effects of the amount of diversity in the initial library. In Sec.
combination provides in the evolutionary process, as well a$v, we move on to the consideration of equilibrium proper-
such aspects as the role of mutation and finite-populatioties, with a discussion of the genetic load under recombina-
effects. tion and a comparison of the equilibrium position with and

Compared to other evolutionary processes, DNA shufflingvithout recombination. In Sec. V, we discuss finite-
has two unique features that render it attractive to theoreticgdopulation effects, focusing on the question of how large
study. First, the methods of biotechnology enable a uniquenust the population size be so that it behaves like one of
recombination scheme that goes well beyond the classicahfinite population.
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IIl. MODELING THE DNA SHUFFLING PROCESS (a)

DNA shuffling involves a directed evolution process
wherein a library of homologous DNA sequences is subject
to rounds of competitive selection amvitro recombination
with multiple parents and multiple crossoveisgl. DNA
shuffling is a discrete process with nonoverlapping genera-
tions, each round of which involves selection, recombina-
tion, and point mutation, and is finished by amplification via
the polymerase chain reactioRCR) of the population back
to it original size. The typical selection scheme in DNA shuf-
fling experiments is truncation selection, also known as
breeding selection, where only a fixed portion of the popu-
lation (e.g., the top 10 %is chosen to be retained to partici-
pate in later rounds. In truncation selection, whether a par- (b)
ticular member of the population is selected or not depends
on whether the desired trait exceeds a certain threshold set by
the population as a whole and by the selection strefigth
the fraction of population selectgd\s opposed to other evo-
lutionary scenarios, there is no advantage to being better than
the cutoff threshold—there is no pressure to excel. Math-
ematically, this has a dramatic effect on the dynamics, in that
the effect of population size is much weaker, as the rare
“superstars” found only in a large population do not skew the
results. m,

The recombination step typically involves random frag- —
mentation of homologous DNA sequences by DNase diges- Binding Energy
tion and repeated cycles of reassembly via a self-primed
polymerase chain reactiofv,8]. Recombination produces FIG. 1. (a) Phenotypic landscape: Binding energy is exactly the
chimeras with a controllable average fragment gfeorder  number of favorable active sitédenoted bym). Dash line indicates
10 base pairs or aboyePoint mutation is incorporated via the corresponding selection threshatg at a particular stage of
the recombination and amplification steps where PCR is utievolution. (b) The fitness has a dynamic truncation landscape. Se-
lized and is naturally error prone. To date, the rate of pointjuences with binding energy below the threshmigare discarded,
mutation has been kept very low and only single nucleotidevhereas those with binding energy above the threshold are retained
substitution is assumed to be involved. Thus, sequence diveie reproduce with equal rate.
sity has come mostly from the diversity present in the initial
library instead of being generated by point mutation. Thiscontribution of a specific site to the binding energ@)lif
lessens the deleterious effects associated with high rates tferein sits a favorabl@leleterioug nucleotide. We will refer
mutagenesis but ultimately limits the usefulness of theto a favorablgdeleteriousnucleotide as a mataimismatch
method. A proper balance of recombination and mutation, aith respect to the optimal sequence. This formulation is in
we shall see, would lead to more optimal results. fact a two-state model for protein-DNA bindin@3,15. The

To make our discussion concrete, we envision the combinding energy of the sequence is simply the number of sites
petitive evolution of a library of DNA sequences, selectedwith favorable nucleotides.
via binding affinity to certain proteins; an example of such a  Figure Xa) shows schematically the shape of our pheno-
system is the DNA-histone interactigii2]. As discussed typic landscape. Of course, our model reflects just the sim-
elsewhere[13-19, selection achieved via thermodynamic plest possibility. In reality, the phenotypic landscape could be
binding can be mimicked to a high level of accuracy by themuch more complicated and is rarely known; in fact, a sig-
simple truncation selection approach. In order to facilitate anificant advantage of directed evolution over rational design
theoretical treatment, we construct simplified models of thds that this kind of knowledge is not necessdf6]. Our
recombination and selection steps. Let us describe the selestrategy here is to study the simplest nontrivial model avail-
tion step first. For selection, we need a model that connectsble and obtain a thorough understanding, with the hope of
genotype and phenotype, which in this case are the DNAvroceeding to more complicated situations to see which re-
sequence and the binding energy of the DNA to the proteinsults obtained in the simple model are general and which are
respectively, as well as a model that specifies selection on th@odel specific. Having specified the phenotypic landscape,
phenotype. We adopt the simplest relationship between genave next describe the selection protocol. Selection acts on the
type and phenotype. We assume that each nucleotide contribinding energy of the sequences. As noted abové/rio-
utes to the binding energy independently and additivelyleculan breeding, truncation selection is used. We define the
Each nucleotide can be one of tig=4) nucleotideqrepre-  selection strength via the fractiaf of selected members of
sentingA, C, G, andT), among which one is favorable and the total population. Suppose we have a distribution of popu-
the rest are equally deleterious. For simplicity, we denote théation P,, in terms of the binding energgn(m=0,1,... L),

Binding Energy

Fitness
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wherelL is the total number of active sites. The threshwig CmA--t--€--G-t---F---A-
is self-consistently determined by e BT
L "€ E €A -G 6
s=abp+ 3 e, @ R e e
m=mg+1
where « in the first term takes into account of the partial Recombination
selection on the threshold state,. ¢ varies from ¢=<1

(relatively weak selectionto small ¢ (relatively strong se-
lection). For those sequences whose number of matches are S A--A-----F---G-
above (below) my, they are selectediscardeg and their
fitness is 10) [see Flg', @)]. In .the trunqatlon selection . FIG. 2. Maximal recombination under a general interpretation.
scheme every member's fitness is COIIQCtI\_/el)_/ an_d dynaml'Each line represents a DNA sequence. Letters represent active sites
cally de_termmed by both th_e phenotypic distribution of thewith variable length fixed regions in between. In building a new
populationPy, and the selection strength In contrast, most  sequence, each active site independently samples the corresponding
fitness landscapes studied prescribe for each genotype a P& in the entire selected population.
set fitness value and its effective fithess value is simply its
own fitness over the mean fitnefsr]. Truncation selection  allow recombination. Let us imagine that the majority of the
generates correlatiorise., linkage between loci, hence it is nucleotides along those DNA sequences are already optimal,
epistatic[18,19. and (nonsynonymousmutations of these nucleotides are le-
We note in passing that the term truncation selection hathal. Hence, we can consider these nucleotides to be fixed
also been used to meanfiged steplike landscape. In popu- during the entire evolutionary process and ignore them ex-
lation genetics literatures, a fixed steplike landscape is alsoept insofar as they provide enough homology so that over-
calledhard truncation selection, and the selection scheme wéapping single-stranded fragments from different DNA se-
employed is sometimes termedfttruncation selection. Due quences can anneal with each ottend do not anneal with
to the dynamical nature of the selection scheme, using fitnessther fragments by acciderduring the self-primed PCR re-
as a yardstick for the evolution is not very useful; for ex-assembly stef7,8]. For the remainingactive sites, we as-
ample, the mean fitness of the population is alwagy$y  sume that they aréa) far enough from each other so that
definition. As a consequence, we will focus on the evolutionrecombination happens freely between any tyo;they are
of the phenotypic distribution, i.e., the distribution of binding subject to point mutations with rate, per nucleotide per
energies, instead of the fitness distribution. generation. Therefore, each active site, along with its fixed
We now turn to the discussion of recombination. Recom4lanking homologous region&hose size or exact delinea-
bination in general is a nonlinear nonlocal operation in setion does not mattgy constitutes a segment. To build a new
guence space, hence not easily amenable to theoretical tregequence from recombination, a number of overlapping frag-
ment [4]. Our basic approach here will be to make aments(which when put together cover the entire sequgnce
substantial simplification of the actual situation and assumere assembled, with each fragment obtained from randomly
perfect recombination between all nucleotides. Namely, irsampling the corresponding fragmefite., having the same
building each new sequence after selection, each nucleotidsctive sitg in the selected population. This idea is depicted
independently samples the nucleotides at the correspondirig Fig. 2 and is an exact realization of our maximal recom-
sites in the entire selected population. Formally, this amountbination model. Of course, one has to be careful to inter-
to assuming that the fragmentation and reassembly processdperse an experimental selection step that will eliminate all
repeated often enough such that there is no linkage betweégthal variantgdue to mutatiopbefore proceeding to an ac-
any of the nucleotides. This is undoubtedly false in detail fortual selection based on useful variation. To proceed, we
the experiments done to date, but we shall see that this aprould then have to explicitly take into account the transfor-
proximation exemplifies the benefit of recombination and ismation from gene sequence to amino acid, as the selection
quite good for describing the result of a scenario involvingwould be on the basis of some desired activity of the protein.
the more feasible case of a finite number of crossovers. Th@/e do not pursue this line of investigation any further in this
advantage of this “maximal” recombination is that it allows work.
for an analytic solution of the model, as will be presented in  Finally, we can rephrase our model in terms of the stan-
the remainder of this paper. Finally, we assume simple poindlard language of population genetics. Each site can be re-
mutation for each site. Namely, each nucleotide is indepenferred to as a locus, which can havealleles, one favorable
dently subject to mutation rate, per generation. This pro- (match and the restmismatchegequally unfavorable. The
cess includes both beneficial and deleterious mutations. set of all L loci forms a chromosome. The recombination
It is worth pointing out that our approach to recombina-scheme is such that the allele of each locus of every new
tion may have more general applicability than merely as athromosome is chosen by randomly sampling the alleles at
approximation for the DNA binding problem. In many casesthe corresponding locus of all the selected chromosomes.
of DNA shuffling, the initial library of genes coding for an The fitness value of each chromosome {®)1when the
interesting protein is chosen from closely related species snumber of matches it has is abogleelow) the thresholdm,.
as to ensure proved functionality and sufficient homology toFor clarity, we list the correspondence in Table I.
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TABLE I. The correspondence between two languages: directed o Maximal recomb. _
molecular evolution and population genetics. o Recomb. w. multi-crossover multi-parents
150| v Recomb. \év one crossover 7
x_No recomb.
DNA-protein binding Population genetics i o oooggggggggggggggggg;gggnggggggg:,
00~ ooed
DNA sequence Chromosome _ 100 oggn“:wvvvwwww b
O, v
NUC|eOt|de LOCUS " Ogns v KXXXXXX XXX XXX KK XXX XXX XXX
L . v XX XXXHXXX S L R
Binding energy Phenotypic value:matches 500 8@3" 40k 4
. . - . . . . Ml Q S RS SESRST
Selection via binding to protein  Dynamical truncation selection g o = :mﬂ%mmm
Correlation of nucleotides Linkage K 3 a‘;}”’" T
% . | o—— C T ]
0 250 500
Despite its enormous practical success, theoretical analy- t

sis of the evolutionary dynamics of DNA shuffling has thus

far been lacking. Sur20], Moore and Marana$21] pro- FIG. 3. Comparison of evolutionary trajectories for four differ-
posed predictive models for various experimental steps oént evolutionary protocols under weak selection. Shown are simu-
DNA shuffling experiments, addressing issues of recombinalation results of the evolutionary trajectory of the average number
tion efficiency and distribution of fragment size during the of matchesm for the population, with an initial clonal population
reassembly involved in a single round of evolution. We con<(i.€., & population consisting of clones of a single chromogome
cern ourselves instead with the evolutionary consequences ®fth no matches at any locus along the chromosome. X, no recom-
multiple rounds. Several aspects of our evolutionary apbination; triang]e, .recor.nbinati(.)n with one random _crossover;
proach have been studied analytically in population geneticgquare, recombination with multiple crossover and m_ultlple pargnts,
[17]. Response to truncation selection in one round, undeysing a per bond crossover probablllty of 0.025. C|rc_le: ma>_<|mal
linkage-free condition, has been characterized in the conteXgcombination. Shown in the inset are the corresponding variances
of classical breeding17,22. The effects of various recom- of the dlstrlputlons vs time, ordered in the same way as the matches
bination schemes have been studied in the special case §f 9enerations curves. Here sequence lerigHi70, selection
evolution without selectiof23]. Kondrashov24] studied a ftrength ¢=0.9, mutation rateu9=0.01, and population siz8l
model with a different type of dynamical fitness landscape,

where the fitness value of a genotype depends only on thgrevious generation to find the parental group. Then, each
difference between its phenotypic value and the mean of thgyemper chromosome of the population in the current gen-
phenotypic distribution, in units of variance of the pheno-gration is built by randomly sampling the parental group to
typic distribution. He derived evolutionary recursion rela- fing its parents, inheriting the parents’ chromosomes accord-
tions and obtained analytical expressions that characteriQﬁg to the recombination scheme used, and mutating the re-
the equilibrium position, with the assumption of only delete-gyjting chromosome. Figure 3 shows simulation results for
rious mutations, conventional recombination, and a Gaussiagyolutionary trajectories of the average and variance of the
distribution before selection. The assumption of unidirec-match distribution under weak selection. For comparison, we
tional mutation is only true when the system is close to theshow results from four different evolutionary protocols: no
optimal state; the Gaussian approximation, as we shall see, jgcombination, single random crossover, multiple crossovers
in fact equivalent to using maximal recombination. In ge-and multiple parentéwhich is the situation closest to experi-
netic algorithms and evolutionary strategies, a research arggenty, and maximal recombination. It is evident that recom-
in computer science where the principles of evolution argination improves both the dynamics and equilibrium state
employed to find optimal solutions to complex problemsag compared to the case with no recombination. For our phe-
[25], a similar setting has been investigated by Muhlenbeimqtypic landscape and selection scheme, the more recombi-
and Schlierkamp-Voosef26], mostly via computer simula- nation the better. Furthermore, the maximal recombination

tion only. scheme captures the essential effect of recombination and
provides a reasonable approximation to the more readily
1. MAXIMAL RECOMBINATION: DYNAMICS achievable case of multiple crossovers from multiple parents.

In the alternative case of strong selectigmot shown, all

To summarize the above discussion, in the language aévolutionary protocols propel the population to an equilib-
population genetics which we will adopt from here on, werium state very close to the optimal state; however the popu-
have a population oN chromosomes each with loci, and lation reaches the equilibrium state much faster when recom-
we study the evolution with dynamical truncation selection,bination is applied.
maximal recombination, and point mutation as specified In our analytical work we will assume, unless specifically
above. We fix the order of operation to be selection, recomnoted otherwise, the population siketo be very large so
bination, and mutation, and keep the population §izeon-  that random genetic drift is negligible; we will briefly discuss
stant at each generation. This model is easily simulated on finite-size effects at the end. We focus on the evolution of
computer. The evolutionary protocols are realized in simulasuch macroscopic characteristics of the population as mean
tions as follows: In producing the population in each generaand variance, as opposed to “microscopic” properties such as
tion, truncation selection is first used on the population of thethe fate of individual mutations. As already noted, the fitness
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distribution itself does not describe the evolution. We instead
study the evolution of the phenotypimatch distribution,
focusing on its first and second moments. For simplicity we
assume linkage equilibrium at the beginning of evolution.
This is in fact not a stringent assumption, since linkage equi-
librium is achieved anyway right after one round of recom-
bination.

A. Dynamics without mutation

We start from the simplest case where the mutation rate
Mo is set to be 0. We assume that each locus has the same
binary distribution characterized by the probability of being
favorable(i.e., a match p(0)(#0). This is in fact the case
most relevant to the DNA shuffling experiments to date,
where ug is kept extremely small and the diversity is almost
entirely provided by the diversity which existed in the initial
library [5]. Starting from the homogeneous initial condition,
we expect that every locus follows the same evolution tra- _ f ©odx [{_ 1 2) 7
jectory, as the evolution dynamics preserve permutation sym- B X(é) \;ETeX 2x ' (@)
metry of different loci. With this in mind, we focus on the
evolution of the probability(t) for one locus to be favorable
at the end of generation The phenotypic probability distri-
bution for the number of matches of a chromosome at th
end of roundt is then a binomial distribution characterized
by meanLp(t). Assuming that. is large(For an exact mean-
field treatment without the assumption of lalgesee Appen-
dix A), the binomial distribution is well approximated by a
Gaussian distributioP(m, t):

FIG. 4. The selection factdB(¢). G(¢) diverges at strong se-
lection ¢— 0 and goes to zero at weak selectipn- 1.

For completion, we show the behavior@ft¢) in Fig. 4. For
0.3< <1, G(¢) is approximately a linear function aop
Twith slope roughly —1.5 andG(¢) — (1-¢)\2 In(1-¢) .
as ¢—1. In the strong selection limit, i.e$—0, G(¢)
—+2 In ¢, which diverges.

After selection, the recombination step restores the inde-
pendence of each locus. The population distribution of
matches returns to a binomi&baussiah distribution char-

1 _[m- m(t)]z) acterized by meamg
P(m,t) = —V’,mex o020 o ) (2) -
m=m, (8)
m(t) = Lp(t), ©)
of =m(1-m/L). 9
a*(t) = Lp(H[1 - p(V)]. (4)

Because of the independence of each locus, we can reexpress

Given such a distribution at the end of generatipmve - L o .
now discuss step by step the effects on the distribution due tgq' (8) in terms of individual match probabilitp; and p(t):

various operations in the evolutionary protocol. In generation

t+1, selection cuts out the lom tail of the Gaussian distri- _
bution. It is straightforward to calculate that the mean match pr=p(0) +
number of the selected population, is

PO PO ) w0
VL

m— m=m+ oG(¢). 5 and the variance of the distribgtion is simpl;pr(l—pr). .
Equation(10) has two features: First, the scaled combination

The new mean can thus be expressed as the old mean plus@nG(¢)/\L is the single control parameter. Second, the
improvement due to selection, which is simply the product ofchange op is proportional to the square root of the variance.
the old standard deviation and a fact®(¢) that solely en- In the case of weak selection, E.0) can be approxi-
codes the strength of selecti§@®(¢) is called intensity of mated by its continuous-time version:
selection in population genetics literatyifa7]. HereG(¢) is
the mean for the normalized distribution resulting from a dp G(¢p) ——
standard Gaussian distribution truncated by aplfraction - = \—E\ p(l-p). (11)

taken off the tail, namely, dt
1 The evolutionary dynamics is governed by two fixed points:
— _= 2
G(¢) = \ZTQSGXP( 2X(¢) ) ©®) p=0 andp=1. p=0 is a trivial unstable fixed point. When
p(0) >0, the population moves towam=1. The entire so-
whereX(¢) is the match threshold defined through lution is
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0, p(0)=0 and in most cases it is beneficial. Though a rigorous proof is
p(t) = 1{ G(¢) (12) not yet available, the pasm megh_anlsm at work, as has been

- 1—sir<ﬁ— t)] p(0) >0, presented by population geneticigsee, e.g., Ref{3] and

2 references therejnis as follows: Selection, as it operates on

. . . , the phenotype, generally introduces correlation between dif-
where S=sin 1[1—2p(_0)]. I_Equat.!on (11). and its SOI_UUO” fereﬁt loci )(g?] a%hromo)s/ome. In the current case where the
have also been denyed in Miihlenbein and SChIIerk"’”’np'selection is via truncation, the correlation shows up as a nar-
Voosen [26]. Frqm this we see .th.at the system aCtua"yrowing of the population distribution in terms of matches.
reacheg the optlma! state n-a finite time, rather than APatter selection, maximal recombination completely breaks
pro?‘Ch'”g exponer_mally. This is due to the square-root beLlp the correlation between loci, resulting in a broader distri-
havior of the velocity neap=1 noted aboveT is given by

bution (see Fig. 3 inset A broader distribution leads to bet-

VL

- \[ ter response to subsequent selection and hence faster evolu-
T—(—+,3>—. (13 tion. In other words, without recombination, the unit of
2 G(¢) selection is the chromosome; with recombination, selection

To appreciate this result and the benefit of recombinationUnit goes down to locus level, so that different loci evolve in
it is helpful to compare it with that of pure enrichmene., @ more parallel fashion.
selection only, given the same initial condition. Starting
from p(0), the population distribution initially is a binomial
distribution. Selection keeps narrowing down the distribution
by chopping off its low tail round by round, and stops when
the distribution contains only the perfect state with

B. Dynamics with mutation: homogeneous initial condition

So far, we have studied the dynamics of maximal recom-
X ination in th n fm ion. Now we insert th in
matches. Note that since here we care about the extreme tb atio the absence of mutatio 0 € insert the point

f the distribution. the G ) “mation is no longer utation process into the evolutionary dynamics. As a first
ot the distribution, the laussian approximation | 9 step, we again assume a homogeneous initial condition such

a_ldequate. Based on this scenario, to detgrmme the evomt'%at each locus has the same probability of being favorable
time T, we look at the fraction of population in the perfect (i.e., a match p(0)(+0). Mutation is the final step of the

state_. In the beg|nn|rL19, tthe fraction 60)". At ro.und'F, the round. Since we only consider single base mutations, linkage

fractlon bgcomeg;)(O) I¢ 'I_'herefore, tLhe $vo|ut|on M8 s not introduced in the process. The mutation process we

is determined by the condition that0)~/¢'A=1. Therefore  ¢,njder here includes both beneficial and deleterious muta-
In p(0) tions; by itself, it drives the chromosomes toward the maxi-

L——. (14 mum entropy point./ A (or 1/A in terms ofp), which is in

In ¢ general opposite to the direction of selection. A simple cal-

culation yields

TA:

Equations(13) and(14) show that the evolution time scales
differently with L in the two cases; asL in the case with
recombination and as in the case of pure enrichment. This
means that the longer the chromosome, the greater the ben- Pm =P+ Fo
efit of recombination. When selection is weak but not ex- A-1
tremely close to Yweak so that continuous-time approxima-
tion is appropriate, but not too close to 1 so that around th
threshold the tail that is cut off is still Gaussian-ljkehe
chromosome is long ang(0) is neither close to 0 nor close
to 1 (so that Gaussian approximation is appropjiatiee es-
timate of evolution time given in Eq13) is applicable. In

(1-Apy). (16)

PCombining this equation with E@10), we obtain a recursion
relation for the evolution op:

this case, p(t+ 1) = p(t) + —2-[1 - Ap(t)] + G(g) Vp([1-pt)],
A-1 VL
T _ ml2+sim1-2p(0)] 1 _ ! (19 (17)
Ta —1In p(0) VLV=21In(1-¢)

clearly showing the superiority of the evolution protocol in- where we have dropped a correction facfdr+ugA/(A
volving maximal recombination. In other cases, Et@) is  —1)] in the last term, sinc@y<<1. It is clear that the second
no longer appropriate. For example, E&j3) predicts a finite  term on the right-hand side of the recursion relation is due to
evolution time even in the limit gp(0) — 0, an artifact of the mutation, and the third term to selection and recombination.
approximations involved. In Appendix A, we discuss theWhen the third term dominates the second term, the dynam-
benefit of recombination under this limit, making use of theics is essentially the same as that with no mutation as dis-
formalism developed there, which is not limited by the ap-cussed above. Whem exceeds the maximum entropy point
proximations mentioned above. 1/A, the mutational contribution becomes harmful to the
We have shown that recombination provides a significangevolution.
improvement wherL>1 and selection is weak. In general,  The recursion relation, Eg17), has an interesting feature.
at the mean-field level, recombination is at least not worséf we divide Eq.(17) by ug on both sides, we have
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FIG. 5. Comparison of simulation results and theory. The evo-
lutionary trajectories of three simulations with totally different pa-
rametersbut same scaling variablé(¢)/(uoVL)] collapse into a
single curve when time is properly rescaled, and this curve agrees FIG. 6. Evolution of individual match probabilitg with inho-
well with the theoretical result obtained from E@.7). Here the  mogeneous initial condition. The initial condition is chosen so that
three simulations all start from a homogeneous initial condition ofhalf of the loci have initial match probability gf;(0)=0.1, while
p(0)=0.1 and population sizhi=10". the remaining half hap,(0)=0.6. The two simulation curves track

the two different groups of loci. The solid curves are theoretical
p(t+1) - p(t) 1 G(¢) results from Eq.(20). Simulations use the following parameters:
= [1-Apt)]+ —=Vpt)[1-p)]. L=170, $=0.9, uo=0.01, andN=10"
Mo A-1 MoVl

L | L | L
0 100 ; 200 300

(18) does; breaking of linkage helps broaden the distribugam
) o — selection narrows the distributiprand in turn facilitates
Equation(18) says that the scaled combinatiGi¢)/(uoVL)  more efficient future selection, hence speeding up the evolu-
is the Single control parameter. In other Words, if diﬁerenttion, and(b} recombination keeps the mean of the popu]ation
choices Oi parameters result in the same Combinatiorﬂjnchanged, whereas mutation goes against Se|e@jme
G(¢)/(uo\L), the corresponding dynamics are exactly thethe population goes beyond the maximum entropy point
same as long as the time scale in each case is rescaled by ftRerefore, as has been recognized for a long time, recombi-
respective mutation raje,. Note that in Eq(17) or Eq.(18),  nation is able to generate variety without the excessive bag-
p(t) can go above 1 when selection is strong; this unrealistigyage of deleterious mutations.
result comes from the Gaussian approximation to the popu-
lation distribution that becomes inaccurate when the popula- ) ) o o B
tion reaches the neighborhood of the optimal state. We will C. Dynamics with mutation: inhomogeneous initial condition
further address the error due to the Gaussian approximation In the previous discussions, we assumed a simple homo-
in our discussion of the equilibrium state. geneous initial condition. An immediate question concerns
As a test of our theory, Fig. 5 shows that the theoreticalwhat happens with a inhomogeneous initial condition, i.e.,
predictions, including the scaling witB(¢)/(ugVL), agree  would different loci synchronize with each other after a short
extremely well with simulation data. This indicates that thetransient period or would they go their separate ways and
finite-population effect in this landscape is insignificant, andonly meet at the end of the process? To answer this question,
the Gaussian approximation to the binomial distribution iswe choose a linkage-free initial condition where half of the
appropriate for sequences of long lengith loci have probabilityp;(0) of being a match, and the other
When selection is weak so that the changeim each half have probabilityp,(0) of being a match. Assuming again
round is small, the evolution equatigh?7) can again be ac- thatL>1, a similar derivation to the one presented above

curately approximated by its continuous-time version, produces

dp R Mol - Apy(1)]

Y =(1- In(1 - t+ D) =p(t)+ —————

g = (1 =AP +Cip(1-p), (19) p1(t+1) =py(t) A1
where t' =[ o/ (A= 1]t and C=(A-1)G(#)/(uo\L). The + & P1(O[L — Py (V)] ,
explicit solution of this equation can be found in Appendix VL/2 Vpy(D)[1 = ps(H)] + po(H)[1 = po(1)]
B. (20

An explicit analytical comparison of the evolutionary per- toll = Ap(D)]  G(¢)

formance between the evolutionary protocol with and with- Pa(t +1) = py(t) + a1 2
out recombination is not available. Both recombination and v
mutation can serve to generate diversity, but the greater ben- « pPo(HO[1 = po(1)]
efit of recombination is due to that facts thaj recombina- Vs 0L = (0] + poOLL - palD] .

tion breaks up the correlation of loci along the chromosome
introduced by selection much more effectively than mutation Figure 6 compares these results with an evolutionary tra-
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FIG. 7. Comparison of simulation results for the average indi- 02 ' ' ..I.»o-.o ' ‘ '
vidual match probabilityp for different initial conditions, in the L o 0-0.4
absence of mutatiorp is the individual match probabilitp aver- I
aged over loci. Heré =170, ¢=0.9, andN=10" 04 ° g
g,.
jectory with inhomogeneous initial conditions. It is clear that p(10) [
different loci go their own ways. 03P h
If mutation is negligible, one finds that the relative R
changes in the individual match probabilities are )
pl(t + 1) - pl(t) — pl(t)[l — pl(t)] (21) 0'20 ' 0}05 ' ()I.] ‘ 0_|15 ' 0.2
Pot+1) = pat)  pa(t)[1 - pat)] Ho

i.e., proportional to the ratio of the variance on each locus. In g1 g simulation results of different mutation rates given a
other words, the selection works on variance; different oCigione initial condition ofp(0)=0. (a) Evolutionary trajectories for
with different p experience different selection pressures dewjfferent choices of mutation rate,. (b) Comparison of individual
pending on their contribution to variance. In the case of in-match probability at the tenth generatiptiL0) for different muta-
homogeneous initial conditions, this means that the evolution rates. The “optimal” mutation rate is aroupg=0.08 under
tionary process will be slowed down by loci having very this condition. Herd.=170, ¢=0.1, andN=10"

small initial p(0); see Fig. 7 for explicit examples.

It is worth mentioning that although systems with differ- ¢t mutation, since we have access only to measurements of
ent initial conditions follow different evolutionary paths, tne full phenotype.

.they enc_i up with the same equilibrium state. Recombinat_io.n Assuming that mutation rate is fixed, we can gauge the
is beneficial to the evolutionary progress even when the iniperformance of different choices of mutation rate by measur-

tial condition is inhomogeneous. ing p after a given number of generations. Figi8¢ shows
a comparison of simulations starting@0) =0 with different
D. Dynamics with mutation: clonal initial condition mutation rates using this criterion. It is clear that there is an

:optimal” mutation rate. Of course, the optimal mutation rate
Hepends on when evolution is terminated. In the more com-

gs;if;JS'EfThghghug tri?)idyanhda?m?tlfl:ltfgr? vaz\lso::gﬁv;"ehens_mon situation, a majority of the loci are already occupied by
Pop ’ Y UNyeneficial alleles, and for the rest, mutation is required to

important. In many situations, mutations are absolutely N€Ctreate the beneficial allele. In this case as well, we can see

essary for the system to find the optimal state. This scenarig . victence of an optimal mutation rate, as in Fig. 9
could happen for a system prepared with a clonelike initial In conclusion, mutation is necessary wﬁen there is limited

condition with some loci lacking the beneficial alleles. In thlsgiversity in the initial library. Even in this case, mutation is

In the above theoretical analysis we have assumed an in

rST?uCtg(t)inoxvfazgg%snotﬂghéic?ﬁzir?:rd ?jtu:gé?fse\?\/eectggd;ﬁj;in nly helpful in the short term dynamics, but harmful to the
y dy ' quilibrium state. In a realistic experiment, since breeding

|r;|t|nal C?nd't'oﬂ’ \{[vr?errew?tlrL rrr‘ler’gbﬁrsﬁ ci)f Ithﬁ ?Oplilatrllonl are usually proceeds for a only few generations there would exist
clones to each other, o beneficial allele at any locus, | optimal mutation rate.

[i.e., p(0)=0]. For this simple case, the obviously best strat-
egy is to subject the system to maximal mutation rate

=(A-1)/A until the system reaches=1/A, and then to |\, \\y|\AL RECOMBINATION: EQUILIBRIUM STATE
stop mutation altogether. However, this naive strategy does
not apply to other clonal initial conditions which are inho-  Having studied the dynamical behavior of the model in
mogeneous; here it is natpriori clear when one should turn the previous sections, we now turn to the study of its equi-
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FIG. 9. Simulation results for different mutation rates given an
inhomogeneous clonal initial condition. Initially, all the members of  FIG. 10. Equilibrium value of individual match probabilifyas
the population are clones to each other; 1/5 of the loci are occupieflinction of #0\[/@(9{))_ The y=x? curve denotes the asymptotic
by mismatches and the rest by matches. Herd 70, $=0.1, and  behavior ofp in strong selectiorflow mutation resulting from the

N=5Xx10°. Gaussian approximation, E4). For simulation resultsl.=170,
1o=0.01,N=10"

librium properties, focusing on the mean number of matches

in equilibrium. This quantity plays the role here that genetic A ,uO\[ 2

load does in normal evolution problems. Strictly speaking, 1-p= G(e)) (24)

genetic load is the difference in fithess between the equilib-
rium population and the optimal fithess state. In our case, ths\
optimal state has fitness value 1, and the mean fitness of thp wer law is accurate in the region of 0.1
population is simply¢, so the difference is trivially 1. < ugL/G(¢)<1. [A more precise statement about fhe

However, since the purpose of the experiments is to maxi- - ; Y
mize the phenotypic value, i.e., the number of matches, thIOWer cutoff for the validity of E(24) is uol.>In ¢ see

. ) ; 5 i
mean number of matches is a reasonable way to characteriggggis'ogoazlg};hg\]{'; 4"]L ‘%Ordgp d?#ed?enniet haeso?lzont; err?irga?e
the equilibrium state, and the “cost” of mutations. Going y yp y

back to the language of DNA-protein binding, we are usingselec'[IOn scheme.

the mean binding affinity of the DNA sequence to character- I IS well knoyvn th_at in a fixed smoo_th Ia_nd_scape, the
. I mutational load isugL in the strong selection limit. We see
ize the equilibrium.

Under the Gaussian approximation, the equilibrium valu from the above that for our breeding problem, strong selec-

A . . . etion at least in the Gaussian approximation, produces a load
p can be found by setting(t+1)=p(t) in Eq. (17), yielding that, scales withuy? rather than the usualy. T,hFe3 reason for

this scaling is easy to understand: With recombination, the

s shown in Fig. 10, for the parameters employed there, this

B(1-p) 1 \2 change due to selection @i, the number of matches, is
P p2: 2(“0\ ) . (22)  proportional to the width of the distribution/Lp(1-p)
(Ap-1° (A-D"\G(¢) ~\L(1-p) (which is independent of the Gaussian approxi-

mation), and mutation reducegL by —u,L. Balancing the

N , . _two effects we arrive at th@y? scaling. This simple argu-
As shown in Fig. 10, for weak and intermediate selectionyant shows that the.o? law is a generic result for the ge-

strength this result agrees with the simulation data. For theqtic |0ad when recombination is at wofkvhich happens
parameter regime of strong selectian very small mutation  \henever the selected population still occupies a number of
rate), uovL/G(4) is no longer a good scaling variable, and gjtferent states When selection strength is sufficiently
the Gaussian approximation begins to deviate from the exacfrong that the selected population lies almost entirely in the

result. o - ) __ optimal state, recombination becomes ineffective as there is
~ For weak selectiorfi.e., [0\L/G(¢)]*> 1) the equilib-  no diversity within the selected population. As a reqals
rium probability is near 1A. We have shown in Fig. 10, the Gaussian result is no longer valid. In

fact, as we shall show below, in this case the usual muta-
312 tional load ofO(u) takes over.
i _ (A-1) G(_¢ (23) For small mutation rates, as we shall see, the mean mis-
A A? MO\[' match number is small at equilibrium, except for very weak
selection. This is in contradistinction to the dynamic case,
where we focused on the case where there were a large num-
When selection is relatively strong, i.e., when ber (orderL) of initial mismatches. There, for most of the

[,uO\s"[/G(qS)]Z< 1, the equilibrium position is time, the Gaussian approximation is quite adequate. In equi-

f)_
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librium, however, this is generically not the case, and a more 6 N S R I
careful treatment is warranted.

To study this issue in more detail, we can make use of a
more powerful approximation scheme that accurately covers
both the strong selection and extremely strong selection
cases so as to find the equilibrium position. Sihpe-L, we
shift our focus to the mismatch probability=1-p~0. Be- L
fore selection, the population distribution in terms of mis- i
match numberk should follow a Poisson distributioR, ,
=Qke™?/k!, whereQ=Lq. Call C, the cumulative probabil- =
ity of being in a state wittk<k,. Selection results in

(25)

¢ = Cko—l + aPkol

wherek, is the threshold, which is determined by the condi-
tion thatCk0_1< B Cko' a<1 counts the partial selection on FIG. 11. Theoretical evaluation of equilibrium value of mean
the members of population witk, mismatches. mismatches: comparison of Gaussian approximation and Poisson

The results of selection, recombination, and mutation ar@PpProximation. Curves corresponding to differkgialues are trial
solutions of Eq.(28) with different choices of threshol&,. The
k-1
1
(E kPy + akoPk0>,

envelope of the trial solutions is the physical solution. For compari-

9= (26) son, the solution given by Gaussian approximation is also plotted.
Lo\ ico HereL =170, uo=0.001.
A intermediate selection strength, the equilibrium position for
4=0 + to =~ 1ol (27) g, e € P

the maximal recombination protocol is given by EG2).

. o ) o For the no-recombination case, we use a result from Cohen
whereg (g) is the individual mismatch probability right af- and Kesslef28]:

ter recombinatiorimutation. The last term is negligible as it
arises from extremely rare compensatory beneficial muta- Ing 1 N A—ZFA) 3 4 Ba(1-Pn)
U A-1 A-1"7 N -1 Pe

tions. Combining Eqs(25)—<27), we arrive at the following
equation that determines the equilibrium average mismatch (29)
when p, denotes the equilibrium value of total number of

numberQ:
B ol ko—k matches divided by chromosome length for the no-
$= K+ U — oS K recombination case. This expression is appropriateLfar
- -Pa)>1, so that selection is not too strong; apg-1/A4
whereU= uL is the genomic mutation rate. The physical > L2 which defines the weak selection regime for the no-

é(¢) curve is given by the envelope of the varidi(s, ko) recombination case. To better understand the difference
for differentky’'s, and is piecewise analytic. Figure 11 shows
the difference between this solution and the solution given
by the Gaussian approximation. Even though the Gaussian I e
approximation has generally the right trend, for this small 0.8 s
mutation rate the Gaussian approximation is numerically off ENN
by a large percentage, except for extremely weak selection. I -
Note also that forp<e™V, selection only preserves the opti- D 0.6
mal state at equilibrium, recombination stops working, and

A-1

e @

(28)

Eq. (28) producesQ=L-Lp=U, the conventional muta- — Recomb. MF numerical AN
tional load, which is a result that is unobtainable from the 04 Echerggﬁgaﬁ?i?lzgggﬁ B
Gaussian approximation. ) |-~ No recomb. analytical approx. A

Now we come back to the question of how much of an 02 - | - |
improvement is conferred by recombination. Figure 12 0.85 0.9 0.95 1
shows a direct comparison of the mean-field equilibrium o

statep with and without recombination, for the same value

of mutation rateu, and sequence length We see that re- FIG. 12. Comparison of equilibrium positions for two evolution-
combination improves the number of matches in equilibriumary protocols: maximal recombinatigmean-field numerical result

especially for intermediate selection strength. In the strongrom Egs. (A6), (A8), and (A9): Gaussian approximation result
selection limit(i.e., wheng<e™), as discussed above, the from Eq.(22)] and no recombinatiopmean-field numerical result

process of recombination is in fact neutral because of a lackom Cohen and Kessld28]; analytical approximation from Eq.

of diversity in the selected population. For the regime of(29)]. HereL=170 andu,=0.001.
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shown in Fig. 12, we reexpress Eg4) to simplify the com- V. FINITE-POPULATION EFFECT

parison with Eq(29), . _ o
In the previous sections, we have assumed an infinite

) U population, and comparison with simulations has shown that
-p= MO—G(d))Z' (30) this approximation is appropriate most of the time. However,
under the experimentally relevant situations, where very
For intermediate selection, so that —JiU~1 and strong selection and very low mutation rate are employed,
U/G(¢$)?~1, we have thap, is anO(1) function whereas finite-population effects can show up and be potentially im-
1-p~ uo. Thus the recombination curve remains nparl ~ Portant. As an extreme example, if we choose the best mem-
until ¢ is close to 1, at which point it takes a sharp dive; theber from the population, i.eN¢=1, then recombination has
no-recombination curve moves downward Continuous'y.nothlng to work with and offers no benefit. In this section we
Thus, if selection is not very weak, the equilibrium statediscuss the population size above which the evolutionary dy-
under recombination is much less sensitive to the degree ¢famics and equilibrium can essentially be deemed the same
Se'ection' and lies very close to the 0pt|ma| state. as those of infinite pOpulatlonS. To rid ourselves of the im-
Now, we move on to consider the region where the re_paCt of initial Conditions, we assume an |n|t|a"y diversified
combinationp takes its dive. Here the picture is most clear inPPopulation. Two population sizes are relevant for this prob-
the limit where we takéJ to be a constant of order 1 ahd lem, the total population siz&l at the beginning of each
to be asymptotically larggor equivalently,u, to be small ~generation, and the selected population dig. We will
~L1 for large L). From Eq.(22), we know that the dive focus on the case most often encounteredhinitro evolu-
takes place at 1~ L2 (up to logarithmic corrections in tion experiments, namel\N very large, butN¢ is rather
1-¢), wherep is of order 1 and away from both 1 and.4/ ~ Small. In the following analysis, we s¢tconstant, and com-
On the other hand, when I»—~L"%2 1-¢ is stil big Pare the evolutionary trajectory for different population sizes
enough for Eq.(29) to be valid for the no-recombination N. We start again from the simplest case of no point muta-

case. Using the smallness @f-¢)/U~L Y2 we find that  tion, shown in Fig. 1@). It can be seen that in general the
smaller the population size, the worse the evolutionary effi-

(1-¢) .y APaA- 1)2 ciency and the equilibrium state. Under these conditions, the
U - ~ w (31 finite-population effect comes from the genetic association

between loci that results in the loss of favorable alleles from
showing thatp, is close to 1/4 with corrections of order the entire population when the population is subject to selec-

L~Y4, Thus, we have showtin the limit of small o and ~ tON. _ o .

largeL) that, as long as selection in the maximal recombina- Ve can estimate the population sikig above which the
tion case is not very wealie., 1-eY>1-¢=L"12), pis populat_|on dynamic approaches infinite-population results by
a finite distance from the random resultA/and recombi- €stimating the average number of lost favorable alleles at all
nation is beneficial. loci in the selected population. As the individual match prob-

Now we move on to the weak selection regime agamability p is lowest at the beginning of evolution, if there is
focusing on the limit of smalk, and largeL (while main-  @ny loss of favorabl_e allele, it is most likely to happen at the
taining U~ 1). We first discuss the regime whetg/2>1  first round of selection, hence we focus on the first round of

—¢>L"L In fact, in this regime is close to 1/4. Using the selection and recombination. Right after the first round of
weak selection approximation g, i.e., Eq.(23), we obtain selection, the probability for a specific locus to lose the fa-
that p-1/A~ (1-$)LL2. In the same regime, Eqe29) and  Vorable allele i1-p(1)]"?. Therefore the average number
(31) are still valid for the no-recombination case, heiige  ©f loci losing the favorable allele is(1-p)"'’. The opposite
-1/A~\1-¢<p-1/A, showing that here as well recom- Way of saying this is that for the population to retain favor-

bination is beneficial. When selection is even weaker so thatPle alleles at all loci after the first round of selection, we
1-¢~L"L p—1/A~L"Y2In L. On the other hand, the no- requireL(1-p)No? < 1. This gives the following estimate of

recombination system exhibits the scalii&$] 0-
1 ~ (1-¢) 1 -iInL
-—~L Wf(—), 32 No=—+———, (34)
Pam 4 o (32 0% $in[1-p(1)]
wheref denotes a scaling function @1 —¢)/ug. For 1-¢  where p(1)=p(0)+G()\p(0)[1-p(0)]/L. If in the first
~L™1~ uo, we have round the above criterion is met, then it is less likely for the
. population to lose any favorable alleles at successive rounds
p-1/4 L 33 when subject to selection, at) increases in later rounds
Pa—1/A vin L. (B3 and L(1-p)N* becomes increasingly smaller than 1. Com-

parison with simulation results shows that E84) gives a
Thus, in this somewhat unrealistic regime as well, the recomreasonable estimatat least correct in order of magnitude
bination equilibrium position is much closer to the optimal When a(weak point mutation is involved, the dynamics
state. Finally, in the ultraweak selection limit, bgih andp  can be separated into two regimés) recombination domi-
converge to 1A. nated evolution, where for loci that have a favorable allele in
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! e AT A course, the above arguments assumed a random initial li-
‘ 1 brary. If one starts from a population of a single clone, then
0.8 o ] as already explained above, even at the beginning mutation
] is absolutely necessary to generate diversity. For this case it
0.6 4 is more difficult to directly estimate the finite-population ef-
p : | .
04 O'ON=5000 -
e
x-x N= 1
02 A"AN=5QOOO | VI. DISCUSSION
— Infinite Pop.

In this work we proposed and studied a simplified model
) ‘ 3 10 ' 15 of DNA shuffling, a very important evolutionary protocol for

t directed evolution. We investigated this model from a popu-
lation genetics’ point of view, as a multilocus evolutionary
model incorporating both recombination and point mutation
and subject to dynamical truncation selection. Our specific
recombination scheme, as an extreme limit of multiparent
multicrossover genetic mixing employed in DNA shuffling,
enables us to pursue analytical results for the dynamical and
equilibrium features. To summarize, we derived the recursion

04 £ J o0 N=5000 4 relations that completely characterize the evolutionary pro-
L ea N=10000 ] cess, which shows explicitly how recombination helps to
A N:25000 | speed up the evolution. Assuming a large number of loci, we

02 a8 N=50000 : ng a‘arg .
— Infini found that selection and mutation affect the evolutionary pro-

(b) Infinite Pop. ] S : :
cess only through a combination of their respective param-

0 . | . 1 . | . | 3 N . )

0 10 20 30 40 eters. When the evolution is relatively slow so that the dis-

crete recursion relation can be approximated by a continuous
differential equation, we could solve for the evolutionary tra-
FIG. 13. Finite-population effect on the dynamics and equilib-jectory, and rigorously prove in special cases that it is indeed
rium of maximal recombination: Simulation results for the case offaster than that for the case without recombination. We also
(a) no mutation(uy=0) and (b) weak mutation(uy=0.001. With investigated how different initial conditions and mutation
mutation, two regimes existi@) at the beginning recombination rates affect the evolutionary trajectory. As to the equilibrium
dominates evolution, as in the mutation-free case @mdat later  properties of the system, we found that the genetic load has a
stages mutations are essential, as they are needed to find lost favgealing form different from that without recombination, as
able alleles. Here evolution is constrained by the rate for mutatioong as the selection is not too strong. We also showed that,
to find beneficial alleles, thus slower. Hete=170, $=0.001.  in terms of equilibrium state, recombination will help the
Infinite-population trajectories are theoretical results taken from Eqmost when selection is neither too strong nor too weak. At
an. the end, we discussed the finite-size effect under conditions
relevant to the shuffling experiments, and estimated the mini-
mal population size above which the population behaves like
them, recombination helps those favorable alleles to spreaah infinite population.
to the whole population, as in the mutation-free case,(and We have been focusing on a model with specific condi-
mutation/recombination evolution, where loci that have losttions, but our results are actually applicable to broader situ-
their favorable alleles due to selection need mutations to fin@tions. Let us first discuss selection.
them again. The dynamics in this regime is significantly (a) For simplicity, we employed a dynamical trunca-
slower, as seen in Fig. 13. In this case, E¢34) still iden-  tion selection. In the case of DNA sequence evolution via
tifies the smallest population siZ¢, that behaves more or binding to protein, selection is “smoothe(’e., the step cor-
less like an infinite population. As a side note, the flip side ofners are roundefl3,15). This simplification does not cause
the finite-population issue is that there exists an optimal seany substantial difference in our analytical results as long as
lection pressure for a particular population size; an estimatéhe change in binding affinity is largée., the step is steep
of this optimal ¢ can be found from the conditioh(1 enough.
-p)NP<1. (b) Our approach and results are also applicable to the
The estimate of, given ¢ (or equivalently the optimal type of dynamical(soff selection studied by Kondrashov
¢, given N) has practical implications. It gives a population [24]. There, the selection is implemented as a functix),
size that is just enough for the evolution to proceed at itsvhereX=(m-m)/o, i.e., the phenotypic difference between
fastest ratggiven a selection strengthSince in real-life ex- the phenotype and the meam divided by the standard de-
periments selection routinely involves screening the populaviation o of the phenotypic distribution. The effect of this
tion, which is costly and time consuming, a smaller whiletype of selection on a population with a Gaussian distribution
still equally effective population size would be helpful. Of is
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mg— m= o4, (35) with S. P. Otto, A. Poon, W. P. C. Stemmer, and J. Widom. In
addition, we thank the anonymous reviewer for very helpful

where 8 is a quantity solely characterized by the selectioncomments. This work was partially funded by the NSF spon-
function W(X) and does not depend on the population phe-sored Center for Theoretical Biological Phys{@Grants Nos.
notypic distribution[see Eqs(7) and (14) of Kondrashov ~PHY-0216576 and 0225630

[24]]. It is evident that Eq(35) is analogous to Eq5) ex-

cept that one needs to replaGés) with 8. Therefore, when  APPENDIX A: EVOLUTIONARY RECURSION RELATIONS
one exchange&(¢) with &, all our results under the Gauss- FOR ARBITRARY CHROMOSOME LENGTH
ian approximation remain valid, including various scaling . , . ) )
arguments and solutions to the continuous evolutionar)(_ In the discussion of the evolutionary dynamics and equi-
equations. |pr|u_m _state, we ma_ke use o_f a (_Saus_s(al_lmd_a P0|s_son_
Now we move to recombination. One immediate questiorplstnbunon) to approximate a bmomlql dIStrIbutI(.)n,.Whl.Ch is
is what would change when the recombination scheme i§ccurate whem > 1 (except for the tails of the distribution
more realistic. A straightforward generalization of the maxi-'" fact, one can relax this condition and work directly with
mal recombination toward the realistic situation is that weth® binomial distribution, with the help of special function
can cut each DNA sequence into segments of equal lengthx(@;b), the incomplete Beta functior,(a,b) is defined as
with the maximum recombination as the extreme case of
length equal to 1. Computer simulations show that in general 1 X
the longer the segment length, i.e., the less crossovers for l,(a,b) =—J dt 41 -t)°2, (A1)
each chromosome, the worse the performance. For a general B(a,b) Jo
segment length, one can derive a hierarchy of recursion re- . .
lations that relate the cumulants of the population distribuWhereB(@,b) is the complete Beta function.
tion at the current generation to those of previous generation, | "€ Probability density o matches is a binomial distri-
an approach that has been applied to a multilocus system diyition,
a fixed landscap§29,3Q. How to close the chain of recur- _ Amem L-m
sion relations repmains to be studied. The difficulty is associ- Pp(mL) = Cp™(1 =p)=™. (A2)
ated with the remaining linkage within each segment. In any The cumulative probability densitgfor m>0) is related
event, the maximal recombination model can serve as a thee the incomplete Beta function via
oretical upper limit which is qualitatively correct and even .
reasonably accurate quantitatively. )
Our study has been guided by threvitro evolution pro- E Pp(i,L) =lp(mL+1-m),m>0. (A3)
cess, where the intensity of recombination and mutation are =m
both prescribed by the experimenter. This might not be theye have, at the selection,
case in a more natural setting, where the evolution of recom-
bination (mutation itself can be an important aspect of the
problem [31]. Our model does not incorporate a modifier p=aPy(my,L)+ X PyiL), (A4)
gene that explicitly controls recombination rate. In such a i=mg+1

modifier approach, the recombination rate can itself evolvgnare agaim, is the threshold and population members at

because the modifier gene is under indirect selection due Q¢ siate withm, matches may be partially selected.
its association with other genes on the same chromosome The new individual match probability after selection and
under direct selectiof31]. recombination is

Finally, we believe that our model may be relevant to

L

some examples of natural evolutiof@ dynamical trunca- 1 L
tion selection can also exist in nature, for example, the mu- Lp'= —| amyPy(my,L) + > iPn(i,L) . (A5)
tual selection in a host-parasite system @hgrecombina- ¢ i=mg+1

tions_of multiparent, multicros_sover type do _exist _in nature: Incorporating the mutational process and making use of
certain RNA viruses have multiple segments in their 9enomegq (A4) we have, for 6<my<L

and when multiple viruses infect the same host and new vi-

rus particles are made, recombinations of the type we study A

can happeii32]. With the ease of analytical treatment of this 1- A_—l’uo

model, we hope it can serve as a theoretical starting point for p,,, = Ko [moeb + Lp , (Mg, L — mg)

understanding interplay among various aspects such as re- -1 Lo '

combination, mutation, and selection, and as a testing ground —Molp(My+1L-my)], 0<my<L, (A6)
t

where general statements can be tried out.
where we made use of the following identity:
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FIG. 14. Comparison of two theoretical approaches with simu-
lation result. Solid curve is the result of EGAG). Dashed curve is FIG. 15. Comparison of the evolution time for maximal recom-
the result of Eq(17). HereL=10, ¢=0.9, andu=0.001. For the  pination between the exact mean-field result and the approximation.
simulationN=10% The exact mean-field result is obtained from E@s6), (A8), and
(A9). The approximation is given in EqA12). Here L=100, ¢
=0.9, andug=0.

There are two special cases where the recursion relation
in Eq. (A6) needs to be modified. Whan,=0,
a number of serious limitations. Here we focus on (@)
~ 0 limit. Assuming selection is weak, one would expect that
during the early stage of the evolutiomy=0. At this stage,
we have

A
_mo (4 P
pt+1—A_1+(1 A—l'uo)¢’% 0. (A8)

Whenmy=L,
Pr+1= P @- (A10)
Per=1-pomo=L. (A9) The thresholdm, increases above 0 when the probability

The dynamics and equilibrium properties follow from Egs. density at state Q,]_—p(O)/q?t]L, is less than 1. Hence the
(A6), (A8), and(A9). Figure 14 shows that, when the chro- time Ty it takes the population to increase its threshold above
mosome length. is short, indeed this approach significantly Ois

improves the agreement with simulations. In p(0) In[1-(1-¢) "]
Making use of the formalism developed above, we now 0= o n & (A11)
revisit the issue of evolution time when the mutation rate is

zero. In Sec. lll A we used Gaussian approximation to anatsing Eq.(12) for estimation of the evolution time after the
lyze the problem. As mentioned there, the result obtained hasarly stage, we obtain the total evolution time as

—
!’L
To+ [7—27 +sin[2(1 - ¢)* - 1]} G\(d>) , 1-p(0)> (1=
T, v I
—+sm11—2(0)}—, 1-p(0) < (1-¢)*™.
[2 S [P
[
The first case is fop(0) small, with the initial selection Now that we have an estimate that is applicable even for

thresholdm,=0. The second case is fp(0) not particularly  small p(0), let us compare the evolution time for maximal
small, with the initial selection threshotd, > 0. How good  ecompination with that for pure enrichment, in the limit of
is this estimate? Figure 15 shows the comparison of the evo—(o) 0. T and T, are both proportional to Ip(0)/In

lution time between the exact mean-field regolitained by P —=0. i A ) prop ) p s _¢'
following recursion relations in EqgA6), (A8), and (A9)] H_oweve.r, in the case of enrichment, the singularity is asso-
and the approximation obtained in E&12). The agreement Ciated with chromosome length[see Eq(14)], whereas for

between the two is reasonably good overall. maximal recombinationl. only appears in the nonsingular
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part. Therefore, in the smali(0) limit, maximal recombina- A2+C2 A I1-Ap+Cip(1-p)
tion is again beneficial. t'=-—In
’ 2 2|1~ Ap(0) + C\p(O)[1-p(0)]
APPENDIX B: EXPLICIT SOLUTION OF THE C(l A/Z){ |2\ (l P/ip+C- \A|
EVOLUTION EQUATION VA 2\'(1 p)/p+C+ \A
|
Assuming that at=0 the individual match probability is n|2\’[1 ~p(0))/p(0) +C - \A|
p(0), the continuous-time approximation of Ed.8) is 2V[1 -p(0)])/p(0) + C+ \,
/ 1. [1=p(0)
—— - C(tan )
o= (L=Ap) +Cp(1-p), (B1) p(O)

(B2)

wheret’ =[uo/ (A-1)]t and CE(A-l)G(¢)/(,uO\s’E). This  where A=C?-4(1-A). In the absence of mutation the
continuous-time approximation is appropriate when changabove equation has been solved, the solution a sinusoidal
of p between consecutive rounds is sm@k., when selec- function[see Eq(12)]. The other extreme situation is when
tion is not very strong For most parameter values the right- the selection strengtip is 1, which leads tdG(¢)=0 and
hand side is positive, therefopekeeps increasing. The gen- C=0. In this casep goes to 1/4 exponentially with time

eral solution of Eq(B1) is constant —1f1 - Auo/ (A-1)]= Apo/ (A-1).
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